Features of Hardening of Aluminosilicophosphate Binder in Cellular Concrete

Number of journal: 1-2-2024
Autors:

Abyzov V.A.,
Posadnova N.E.

DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-53-58
УДК: 666.973.6

 

AbstractAbout AuthorsReferences
Cellular phosphate concretes are used as an insulating material for some high-temperature aggregates due to their high temperature resistance, fire resistance and residual strength at the level of values after drying. The use of industrial waste in phosphate cellular concrete technology made it possible to improve some properties without reducing the application temperature. The paper shows that dispersed aluminosilicate waste from refractory production has sufficient activity (porization ability) to obtain a phosphate binder. The features of the hardening of an aluminosilicophosphate binder cured with dispersed metallic aluminum have been studied; the change in the phase composition of the cured binder after firing at different temperatures has been studied by differential thermal and X-ray phase analysis. It has been established that the developed aluminosilicophosphate binder makes it possible to obtain fireclay cellular concrete with an application temperature of up to 1400оC. A comparison of the changes in the phase composition for the developed aluminosilicophosphate composition and a pure aluminophosphate binder is performed. A shift in the temperature of the processes is noted in an upward direction for the aluminosilicophosphate binder, which is explained by the fact that silicon ions do not form independent phosphate compounds, but are embedded in the crystal lattice of aluminophosphates, changing their properties and shifting the intervals of phase transitions.
V.A. ABYZOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.E. POSADNOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

South Ural State University (National Research University) (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)

1. Salmanov G.D., Gulyaeva V.F., Aleksandrova G.N. Some studies of highly refractory concrete using an aluminophosphate binder. Zharostoikie betony. 1964, pp. 72–103. (In Russian).
2. Patent USSR 416327. Syr’evaya smes’ dlya izgotovleniya zharostoikogo gazobetona [Raw mixture for the production of heat-resistant cellular concrete] / Nekrasov K.D., Sheikin A.E., Tarasova A.P., Krivitskii M.Ya., Fedorov A.E., Blyusin A.A., Karpova A.L., Avdeeva T.P. 1974. Bulletin № 7. (In Russian).
3. Nekrasov K.D. Lightweight heat-resistant concrete in construction. Lightweight heat-resistant concrete and fire resistance of reinforced concrete structures: Abstracts of the reports of the coordination meeting-seminar. Penza. 1988, pp. 3–6. (In Russian).
4. Abyzov V.A. Heat-resistant phosphate cellular concrete, adhesives and binders based on dispersed high-alumina industrial waste. Science of SUSU: materials of the 66th scientific conference. 2014, pp. 854–861. (In Russian).
5. Latypova L.I. Heat-resistant phosphate materials based on high-alumina waste. Vestnik of the South Ural State University. Series Construction and architecture. 2012. No. 15, pp. 69–71. (In Russian).
6. Abyzov A.N., Kir’yanova L.A. Lightweight cellular and porous heat-resistant concrete with phosphate binder. Beton i zhelezobeton. 1981. No. 12, pp. 15–16. (In Russian).
7. Kiryanova L.A., Abyzov A.N. Cellular heat-resistant concrete with aluminophosphate binder and fireclay. Heat-resistant concrete, materials and structures: Collection of scientific papers. Chelyabinsk: UralNIIstromproekt. 1981, pp. 63–70. (In Russian).
8. Kiryanova L.A. Corundum cellular and porous heat-resistant concrete with phosphate binder. Materials and structures for prefabricated construction of thermal units: Collection of scientific papers. Chelyabinsk: UralNIIstromproekt. 1982, pp. 112–119. (In Russian).
9. Mel’nikov A.M., Tul’skii G.V. Heat-resistant phosphate concrete with light refractory filler, state of production and prospects for their development. Research of fire-resistant and heat-insulating phosphate materials (technology and properties): Collection of scientific papers. Moscow: TsNIISK im. Kucherenko. 1987, pp. 27–35. (In Russian).
10. Wang Q., Chen J., Gui B., Zhai T., Yang D. Fabrication and properties of thermal insulating material using hollow glass microspheres bonded by aluminum–chrome–phosphate and tetraethyl orthosilicate. Ceramics International. 2016. Vol. 42. Iss. 4, pp. 4886–4892. DOI: https://doi.org/10.1016/j.ceramint.2015.12.003
11. Abyzov A.N., Ivanov A.G., Kir’yanova L.A., Sergeev S.I., Pak Ch.G. Experience in the use of phosphate heat-resistant concrete based on industrial waste. Construction materials and products using local resources and by-products: Collection of scientific papers. Chelyabinsk: UralNIIstromproekt. 1983, pp. 82–87. (In Russian).
12. Kingery D. Phosphate bonding in refractories. S.B. Massachusetts Institute of Technology. 1948. 94 p. https://core.ac.uk/download/pdf/10129471.pdf
13. Zamyatin S.R., Mamykin P.S. Complex studies of clay-phosphate binder. Zhurnal prikladnoi khimii. 1972. Vol. XLV. No. 5, pp. 956–960. (In Russian).
14. Abyzov V.A., Ryakhovskii E.N. Development and experience in the use of refractory adhesives based on phosphate binders. Ogneupory i tekhnicheskaya keramika. 2007. No. 11, pp. 28–31. (In Russian).
15. Patent RF 2257359. Glinistofosfatnyi material [Clay phosphate material]. Svatovskaya L.B., Yakimova N.I., Makarova E.I., Latutova M.N., Dziraeva E.A., Kryukova E.V. 2005. Bulletin № 5. (In Russian).
16. Bednárek J., Ptáček P., Švec J., Šoukal F., Pařízek L. Inhibition of hydrogen evolution in aluminium-phosphate refractory binders. Procedia Engineering. 2016. Vol. 151, pp. 87–93. DOI: https://doi.org/10.1016/j.proeng.2016.07.384
17. Khabbouchi M., Hosni K., Mezni M., Srasra E. Simplified synthesis of silicophosphate materials using an activated metakaolin as a natural source of active silica. Applied Clay Science. 2018. No. 158, pp. 169–176. DOI: https://doi.org/10.1016/j.clay.2018.03.027
18. Abyzov V.A. Lightweight refractory concrete based on aluminum-magnesium-phosphate binder. Procedia Engineering. 2016. Vol. 150, pp. 1440–1445 DOI: https://doi.org/10.1016/j.proeng.2016.07.077
19. Boigelot R., Graz Y., Bourgel C., Defoort F., Poirier J. The SiO2–P2O5 binary system: new data concerning the temperature of liquidus and the volatilization of phosphorus. Ceramics International. 2015. Vol. 41. Iss. 2. Part A, pp. 2353–2360. DOI: https://doi.org/10.1016/j.ceramint.2014.10.046
20. Rahman M., Hudon P., Coupled A. Experimental study and thermodynamic modeling of the SiO2–P2O5 system. Metallurgical and Materials Transactions B. 2013. Vol. 44, pp. 837–852. DOI: 10.1007/s11663-013-9847 3
21. Bobrov B.S., Zhigun I.G., Kiseleva L.V., et al. Phase-composition of binder based on aluminophosphate cementing agent and changes in it on heating. Journal of applied chemistry of the USSR. 1986. Vol. 59. No. 12, pp. 2653–2657. (In Russian).

For citation: Abyzov V.A., Posadnova N.E. Features of hardening of aluminosilicophosphate binder in cellular concrete. Stroitel’nye Materialy [Construction Materials]. 2024. No. 1–2, pp. 53–58. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-821-1-2-53-58


Print   Email