Log in

Design of Automated System of Control of Factories and Plants for Production of Mortar and Concrete Mixes

Number of journal: 10-2015
Autors:

Ostrouh A.V.
Nedoseko I.V.
Ajsarina A.A.
Strugovec M.I.

DOI: https://doi.org/10.31659/0585-430X-2015-730-10-70-74
УДК: 666.9

 

AbstractAbout AuthorsReferences
A new approach to the design of an automated system of control of a concrete factory which is a complex of means of technical, information, mathematical and software provision for managing technological objects is proposed. The system ensures the optimal level of automation of accumulation and processing of information for the formation of control signals and transmitting them without losses and distortion to actuators for achieving the most efficient operation of the management object as a whole.
A.V. OSTROUH1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.V. NEDOSEKO2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.A. AJSARINA3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M.I. STRUGOVEC2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Moscow State Automobile and Road Technical University (64, Leningradsky Avenue, Moscow, 125319, Russian Federation)
2 Ufa State Petroleum Technological University (1, Kosmonavtov Street, Republic of Bashkortostan, Ufa, 450062, Russian Federation)
3 The branch of FSEI HPE MSUTM named after K.G. Razumovskiy in Meleuz , Bashkortastan (34, Smolenskaja Street, Meleuz, 453850, Respublika Bashkortostan)

1. Ostroukh A.V., Nikolaev A.B. Intellektual’nye sistemy v nauke i proizvodstve [Intelligent systems in science and industry]. Saarbrucken: Palmarium Academic Publishing. 2012. 312 p.
2. Ostroukh A.V., Tyan’ Yu. Modern methods and approaches to building management systems of production and technological activities of industrial enterprises. Avtomatizatsiya i upravlenie v tekhnicheskikh sistemakh. 2013. No. 1, pp. 29–31. (In Russian).
3. Ostroukh A.V., Glebov A.O., Karpov S.V., Karpushkin S.V., Krasnyanskiy M.N. Optimization of design and performance characteristics of heating system of press equipment. American Journal of Applied Sciences. 2014. Vol. 11. No. 6, pp. 939–946.
4. Kalashnikov V.I. How to transform old generation of high-performance concretes concretes new generation. Beton i zhelezobeton. 2012. No. 1, pp. 82. (In Russian).
5. Kalashnikov V.I., Borisov A.A., Polyakov L.G., Krapchin V.Yu., Gorbunova V.S. Modern views on the use of fine ground cement and concrete in the VNV. Stroitel’nye Materialy [Construction Materials]. 2000. No. 7, pp. 12–13. (In Russian).
6. Vei P.A., M’o L.A., Ostroukh A.V., Ismoilov M.I. Overview of the current state of development of automation of production of dry construction mixtures. V mire nauchnykh otkrytii. 2012. No. 12, pp. 12–19. (In Russian).
7. Ostroukh A.V., Vei P.A. Optimization of the process parameters of mixing of dry building mixes in a horizontal drum mixer by continuous simulation. Avtomatizatsiya i upravlenie v tekhnicheskikh sistemakh. 2014. No. 2, pp. 21–28. (In Russian).
8. Kabir M.R., Ismoilov M.I., Ostroukh A.V. Automated Control System for concrete plant. Avtomatizatsiya i upravlenie v tekhnicheskikh sistemakh. 2014. No. 3, pp. 178–190. (In Russian).
9. Ostroukh A.V., Aisarina A.A. Development of an automated control system of concrete mixing plants with twin-shaft mixer. Avtomatizatsiya i upravlenie v tekhnicheskikh sistemakh. 2015. No. 1, pp. 51–59. (In Russian).

For citation: Ostrouh A.V., Nedoseko I.V., Ajsarina A.A., Strugovec M.I. Design of Automated System of Control of Factories and Plants for Production of Mortar and Concrete Mixes. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 00-00. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-730-10-70-74

Modification of Dasaltfiberconcrete by Nanodispersed System

Number of journal: 10-2015
Autors:

Saraykina K.A.
Golubev V.A.
Yakovlev G.I.
Fedorova G.D.
Aleksandrov G.N.
Plekhanova T.A.
Dulesova I.G.

DOI: https://doi.org/10.31659/0585-430X-2015-730-10-64-69
УДК: 691.328.43

 

AbstractAbout AuthorsReferences
Management of cement systems structure formation can be achieved by introducing nano-dispersed components, which is supported by studies of various scientists. However, the effect of their use in basaltfiberconcrete to date has not been studied. The article presents the results of research modification basaltfiberconcrete various nano- and ultradisperse carbon-based additives. According to the research found that by the introduction of multi-walled carbon nanotube dispersion is possible to differentiate the composition of the electoral of tumors on the surface of basalt fibers, providing increased adhesion in the boundary layers of the system, contributing to a significant increase in strength characteristics of modified basaltfiberconcrete samples. A modification at basaltfiberconcrete by soot dispersion is formed partially crystallized calcium hydrosilicate tobermorit structure, also sealing the contact zone of reinforcing fibers and a cement matrix. Based on the results of the research we can talk about structural modification of basaltfiberconcrete by nano- and ultradisperse carbon-containing systems, intensifying the process of hydration of Portland cement matrix and the seal on the border with the surface of basalt fiber.
K.A. SARAYKINA1, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.A. GOLUBEV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.I. YAKOVLEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.D. FEDOROVA3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.N. ALEKSANDROV3, Engineer
T.A. PLEKHANOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.G. DULESOVA2, Engineer

1 Perm State National Research Polytechnic University (29, Komsomolskiy Avenue, Perm, 614990, Russian Federation)
2 Izhevsk State Technical University named after M.T. Kalashnikov (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation)
3 North-Eastern Federal University in Yakutsk (50, Kulakovskogo Street, Yakutsk, 677000, Russian Federation)

1. Zimin D.E., Tatarinceva O.S. Reinforcement of cement concrete particulate materials from basalt. Polzunovskiy vestnik. 2013. No. 3, pp. 286–289. (In Russian).
2. Buchkin A.V. Fine-grained concrete high corrosion resistance of reinforced thin basalt fiber. Cand. Diss. (Engineering). Moscow. 2011. 130 p. (In Russian).
3. Buchkin A.V., Stepanova V.F. Cement compositions enhanced corrosion resistance, reinforced with basalt fibers. Stroitel’nye Materialy [Construction Materials]. 2006. No. 7. pp. 82–83. (In Russian).
4. Jakovlev G.I., Pervushin G.N., Kerene Ja., Machulajtis R., Pudov I.A., Poljanskih I.S., Sen’kov S.A., Politaeva A.I., Gordina A.F., Shajbadullina A.V. Shaibadullina A.V. Nanostrukturirovanie kompozitov v stroitel’nom materialovedenii: Monografiya pod obshchei redaktsiey G.I. Yakovleva. [The nanostructuring of composites in building materials: Monograph edited by G.I. Yakovlev]. Izhevsk: IzhGTU Publishing. 2014. 196 p.
5. Simone Musso, Jean-Marc Tulliani, Giuseppe Ferro, Alberto Tagliaferro Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Composites Science and Technology. 2009. No. 69, pp. 1985–1990.
6. Thanongsak Nochaiya, Arnon Chaipanich Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based. Applied Surface Science. 2011. No. 257, pp. 1941–1945.
7. Monica J. Hanus, Andrew T. Harris Nanotechnology innovations for the construction industry. Progress in Materials Science. 2013. No. 58, pp. 1056–1102.
8. Gavrilov A.V. Concrete on the fine sand and filled with cement. Diss. Cand. (Engineering). Rostov-on-Don. 2013. 157 p. (In Russian).
9. Ta Van Fan, Nesvetaev G.V. Effect of white soot and metakaolin in the strength and deformation properties of cement stone. Inzhenernyj vestnik Dona. 2012. No. 4, pp. 9–13. (In Russian).
10. Kuznecova T.V., Kudrjashov I.V., Timashev V.V. Fizicheskaya khimiya vyazhushchikh materialov [Physical chemistry of binding materials]. Moscow: Vysshaya shkola. 1989. 383 p.
11. Mchedlov-Petrosjan O.P. Khimiya neorganicheskikh stroitel’nykh materialov [Chemistry of inorganic construction materials]. Moscow: Strojizdat. 1988. 303 p.

For citation: Saraykina K.A., Golubev V.A., Yakovlev G.I., Fedorova G.D., Aleksandrov G.N., Plekhanova T.A., Dulesova I.G. Modification of Dasaltfiberconcrete by Nanodispersed System. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 00-00. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-730-10-64-69

Concepts and Technology Base Nanomodification of Structures of Building Composites. Part 3: Effective Nanomodification of Systems and Structures of Cement Hardening Cement Stone (Criteria and Conditions)

Number of journal: 10-2015
Autors:

Chernyshov E.M.
Artamonova O.V.
Slavcheva G.S.

DOI: https://doi.org/10.31659/0585-430X-2015-730-10-54-63
УДК: 666.972.16

 

AbstractAbout AuthorsReferences
The problem of the effectiveness of the nanomodification of systems and structures of cement hardening cement paste. Implemented kinetic approach in studying the process of hydration of cement in a modification of the nanostructure of cement stone. Evaluation of nanomodification of carried out by analyzing the performance criterion is integrated into the «anchor» to the conditions of the nanomodification of measure is achieved by varying the flow of kinetic parameters of hydration and hardening of cement and related criteria Е, τ, R. The introduction of nano modifiers optimal dosages accelerates the hydration of cement, with the modification taking place by cement stone structure and morphology of dispersion of tumors is accompanied by elevated-strength values at 28 days age 45–65% depending on the kind of additive.
E.M. CHERNYSHOV, Doctor of Sciences (Engineering), Academician of RAAСS (This email address is being protected from spambots. You need JavaScript enabled to view it.)
O.V. ARTAMONOVA, Candidate of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.S. SLAVCHEVA, Doctor of Sciences (Engineering)

Voronezh State University of Architecture and Civil Engineering (84, 20-letiya Oktyabrya Street, 394006, Voronezh, Russian Federation)

1. Artamonova O.V., Chernyshov E.M. Conceptions and bases of nano-modification technologies of building composites structures. Part 1. General problems of fundamentality, main direction of investigations and developments. Stroitel’nye Materialy [Construction Materials]. 2013. No. 7, pp. 82–95. (In Russian).
2. Chernyshov E.M., Artamonova O.V., Slavcheva G.S. Concepts and bases of technologies of nanomodification of building composite structures. Part 2. to the problem of conceptual models of nanomodification of the structure. Stroitel’nye Materialy [Construction Materials]. 2014. No. 4, pp. 73–84. (In Russian).
3. Artamonova O.V., Korotkikh D.N., Chernyshev E.M. Formation of the structure and management of the strength properties of modified systems in hydrosilicate ultra- and nano-sized particles. Deformation and fracture of materials: Proceedings of the First International Conference. Moscow. 2006, pp. 514–516. (In Russian).
4. Artamonova O.V., Kukina O.B., Solokhin M.A. Investigation of the structure and properties of cement paste, modified complex nano-additive. Deformacija i razrushenie materialov. 2014. No. 11, pp. 18–22. (In Russian).
5. Pomazkov V.V. Questions hydration kinetics of mineral binders. Research on cement and silicate concrete. Tr. probl. Lab., vol. 7. Voronezh. 1964, pp. 5–21. (In Russian).
6. Melihov I.V. Fiziko-himicheskaja jevoljucija tverdogo veshhestva [Physico-chemical evolution of the solid]. Moscow: BINOM. Laboratorija znanij. 2009. 309 p.
7. Eiring G., Lin S.G., Lin S.M. Osnovy khimicheskoi kinetiki [Fundamentals of chemical kinetics]. Moscow: Mir. 1983. 527 p.
8. Tretyakov Y.D., Putlyaev V.I. Vvedenie v khimiyu tverdofaznykh materialov [Introduction to the chemistry of solid-phase materials]. Moscow: MGU. 2006. 400 p.
9. Lothenbach В., Winnefeld F., Figi R. The influence of superplasticizers on the hydration of Portland cement. Proceedings of the 12th International Congress on the Chemistry of Cement. Montreal. 2007. pp. 211–233.
10. Artamonova O.V., Kukina O.B. A study of the kinetics of curing modified cement stone. Nauchnyj vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. Serija: Fiziko-himicheskie problemy i vysokie tehnologii stroitel’nogo materialovedenija. 2014. No. 2 (9), pp. 83–93. (In Russian).
11. Artamonova O.V., Sergutkina O.R., Ostankova I.V., Shvedova M.A. Synthesis of nanoparticulate modifier based on SiO2 cement composites. Kondensirovannye sredy i mezhfaznye granicy. 2014. Vol. 16. No. 1, pp.  152–162. (In Russian).
12. Artamonova O.V. Investigation of the processes of structure formation in cement systems modified nanotubes of chrysotile. Vestnik Central’nogo territorial’nogo otdelenija Rossijskoj akademii arhitektury i stroitel’nyh nauk. 2015. Vol. 14, pp. 154–162. (In Russian).
13. Artamonova O.V., Sergutkina O.R., Shvedova M.A. Synthesis of complex additives based on SiO2 nanoparticles to modify of cement stone. International Conference «Functional Materials». IСFM’2013. Ukraine. 2013, p. 428.
14. Teoriya cementa [Theory of cement] Ed. by A.A. Pashhenko. Kiev: Budivel’nik, 1991. 168 p.
15. Vest A. Khimiya tverdogo tela. Teoriya i prilozheniya v 2-kh ch. Ch. 1, 2 [Solid State Chemistry. Theory and Applications in 2 parts. Part 1, 2]. Moscow: Mir. 1988. 336 p.
16. Chernyshev E.M., Slavcheva G.S., Artamonova O.V. By conceptual models management breaking strength of the nanomodified structures conglomerate building composites. Izvestija KGASU. 2014. No. 3 (29), pp. 156–161. (In Russian).
17. Armstrong R.V. Mechanical properties of metals with ultrafine grain. Ultrafine grains in metals. Collection of articles, translated from English by V.V. Romaneeva, A.A. Grigor’yana. Metallurgiya. Moscow. 1973, pp. 11–40. (In Russian).
18. Shchurov A.F. Disperse structure and strength of hydrated silicates of calcium. Silicate and its application. Abstracts of the All-Union seminar. Kaunas. 1980, pp. 159–161. (In Russian).

For citation: Chernyshov E.M., Artamonova O.V., Slavcheva G.S. Concepts and Technology Base Nanomodification of Structures of Building Composites. Part 3: Effective Nanomodification of Systems and Structures of Cement Hardening Cement Stone (Criteria and Conditions). Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 54-63. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-730-10-54-63

Phase Formation of Binders in the System «Lime – Granite NB» in Autoclaved Hardening Conditions

Number of journal: 10-2015
Autors:

Zhernovsky I.V.
Nelubova V.V.
Strokova V.V.
Osadchiy E.G.

DOI: https://doi.org/10.31659/0585-430X-2015-730-10-49-53
УДК: 691.544

 

AbstractAbout AuthorsReferences
This work introduces the results of X-ray diffraction study of phase formation in model systems, hardened in hydrothermal conditions in accordance with the parameters of the production of autoclaved materials. Reaction activity of the mineral components of granite NB is presented. Quantitative ratios of crystalline growths depending on the initial compound of the test composition were found. On the basis of X-ray diffraction analysis data a mechanism of phase formation of system «lime – Granite NB», which consists of the following: reactive silica contained in the binder composition assists the formation of low-basic calcium hydrosilicates (tobermorite and foshagite) – the main contributers of the strength properties of autoclaved materials. The presence of the aluminosilicate component in the binder leads to the formation of the zeolite phase as wairakite which is responsible for durability of products during their operation, as well as hydrogarnets. At the same time the studied system is characterized by the superposition of the hardening mechanisms of the composition: hydrational and geopolymeric.
I.V. ZHERNOVSKY1, Candidate of Sciences (Geology and Mineralogy)
V.V. NELUBOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.V. STROKOVA1, Doctor of Sciences (Engineering)
E.G. OSADCHIY2, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Institute of Experimental Mineralogy Russian Academy of Sciences (4, Academic Osip’yan Street, Moscow Region, Chernogolovka, 142432, Russian Federation)

1. Zhernovskii I.V., Osadchaya M.S., Cherevatova A.V., Strokova V.V. Aluminum-silicate nano-structured binder on the basis of granite raw materials. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 38–41. (In Russian).
2. Neljubova V.V., Kobzev V.A., Kapusta M.N., Podgornyj I.I., Pal’shina Ju.V. Features of nanostructured binder according to the genesis of raw materials. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shukhova. 2015. No. 2, pp. 25–28. (In Russian).
3. Miroshnikov E.V., Strokova V.V., Cherevatova A.V., Pavlenko N.V. A Nanostructured perlite binder and foam concrete on its base. Stroitel’nye Materialy [Construction Materials]. 2010. No. 9, pp. 105–106. (In Russian).
4. Cherevatova A.V., Pavlenko N.V. Foam-concrete on the basis of nanostructured binder // Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shukhova. 2009. No. 3. pp. 115–119. (In Russian).
5. Pavlenko N.V., Kapusta M.N., Miroshnikov E.V. Features of reinforcement of non-autoclave curing cellular concretes based on nanostructured binder. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shukhova. 2013. No. 1, pp. 33–36. (In Russian).
6. Ovcharenko G.I., Mihajlenko A.A. Interconnection of strength and phase composition of the autoclaved lime-ash stone. Part I. Izvestija vuzov. Stroitel’stvo. 2013. No. 10, pp. 28–32. (In Russian).
7. Ovcharenko G.I., Mihajlenko A.A. Interconnection of strength and phase composition of the autoclaved lime-ash stone. Part II. Izvestija vuzov. Stroitel’stvo. 2014. No. 1, pp. 26–32. (In Russian).
8. Ovcharenko G.I., Gil’mijarov D.I. Phase composition of the autoclaved lime-ash materials. Izvestija vuzov. Stroitel’stvo. 2013. No. 9, pp. 28–33. (In Russian).
9. Solovyov L.A. Full-profile refinement by derivative difference minimization. Journal of Applied Crystallography. 2004. No. 37, pp. 743–749.

For citation: Zhernovsky I.V., Nelubova V.V., Strokova V.V., Osadchiy E.G. Phase Formation of Binders in the System «Lime – Granite NB» in Autoclaved Hardening Conditions. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 49-53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-730-10-49-53

Improvement in Manufacturing Technology of Basalt Fiber Concrete with Increased Uniformity

Number of journal: 10-2015
Autors:

Kudyakov A.I.
Plevkov V.S.
Kudyakov K.L.
Nevsky A.V.
Ushakova A.S.

DOI: https://doi.org/10.31659/0585-430X-2015-730-10-44-48
УДК: 666.974, 693.542.4, 693.554-486

 

AbstractAbout AuthorsReferences
Technological methods for preparing the basalt fiber concrete mix with increased uniformity are studied. It is established that 5% of basalt fibers of cement mass is an optimal content ensuring the uniform distribution of fibers in the concrete volume, the growth of compression strength of concrete by 51.2% and tensile strength by 28.8%. In the course of microscopic study of basalt fiber, new formations on the surface of basalt fibers are revealed; it shows the increase in adhesion of cement stone to fibers. The introduction of basalt fibers in the concrete mix significantly improves the uniformity of concrete quality indicators.
A.I. KUDYAKOV, Doctor of Sciences (Engineering)
V.S. PLEVKOV, Doctor of Sciences (Engineering)
K.L. KUDYAKOV, Engineer
A.V. NEVSKY, Engineer
A.S. USHAKOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Tomsk State University of Architecture and Building (2, Solyanaya Street, 634003, Tomsk, Russian Federation)

1. Kudyakov A.I., Ushakova A.S., Kudyakov K.L., Dubasarov D.I., Efremova V.A. Trends in technology development of high strength heavy cement concrete. Building of energy-efficient full assembly economy-class housing: Collection of scientific papers. Tomsk: TSUAB. 2014, pp. 125–131. (In Russian).
2. Kudyakov A.I., Ushakova A.S., Kudyakov K.L., Nevskii A.V. Influence of plasticizers and microarming additives on strength and rheological characteristics of the concrete. Resource-saving technologies and efficient using of local materials in building. International collection of scientific papers. Novosibirsk: NGAU. 2013, pp. 10–14. (In Russian).
3. Vasilovskaya N.G., Endzhievskaya I.G., Kalugin I.G. Cement compositions disperse-reinforced by the basalt fiber. Vestnik TGASU. 2011. № 3, pp. 153–158. (In Russian).
4. Voilokov I.A., Kanaev S.F. Bazaltofibrobeton. Historical excursus. Inzhenerno-stroitel’nyi zhurnal. 2009. № 4. pp. 26–31. (In Russian).
5. Rabinovich F.N. Kompozity na osnove dispersno-armirovannykh betonov. Voprosy teorii i proektirovaniya, tekhnologiya, konstruktsii [Composites based on concrete with dispersed reinforcement. Issues of theory and design, technology, design]. Moscow: ASV. 2004. 560 p. (In Russian).
6. Weimin L., Jinyu X. Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Material Science and Engineering: A. 2010. Vol. 505. pp. 178–186. (In English).
7. Abdulhadi M. A comparative study of basalt and polypropylene fibers reinforced concrete on compressive and tensile behavior. International Journal of Engineering Trends and Technology (IJETT). 2014. Vol. 9. № 6. pp. 295–300. (In English).
8. Elshekh A.E.A., Shafiq N., Nuruddin M.F., Fathi A. Evaluation the effectiveness of chopped basalt fiber on the properties of high strength concrete. Journal of Applied Sciences. 2014. Vol. 14. № 10. pp. 1073–1077. doi: 10.3923/jas.2014.1073.1077. (In English).

For citation: Kudyakov A.I., Plevkov V.S., Kudyakov K.L., Nevsky A.V., Ushakova A.S. Improvement in Manufacturing Technology of Basalt Fiber Concrete with Increased Uniformity. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 44-48. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-730-10-44-48

The Use of Pumps with Servomotors at Permanent Magnets in Heavy Hydraulic Presses

Number of journal: 10-2015
Autors:

Galeev I.A.

DOI: https://doi.org/10.31659/0585-430X-2015-730-10-15-17
УДК: 691.316:666.3.032.65

 

AbstractAbout AuthorsReferences
Traditional hydraulic systems for heavy hydraulic presses exhaust themselves from the point of view of energy efficiency, fast operation and accuracy. The hydro-systems of presses with the use of frequency regulation drives (FRD) are the most prospective alternative of the traditional hydro-system. There are various types of hydro-systems with FRD. The NSMPM system is the most efficient. This article considers main variants of hydro-systems with FRD and gives a comparative analysis with NSMPM.
I.A. GALEEV, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

OOO «INVEST-TEKHNOLOGIA» (20P, Nakhimova Street, 454119, Chelyabinsk, Russian Federation)

1. Онищенко Г.Б., Юньков М.В. Электропривод турбомеханизмов. М.: Энергия, 1972. 240 с.
2. SVP Technology – Injection Moulding Machine. Purchase. 2010. April, pp. 58-59. http://indianpurchase.com/admin/articles_pdf/1308051237-IW%20-%20E%20&%20E%20-%20TECHNICAL%20ARTICLE%20-4.pdf (date of access: 01.09.2015).
3. Patent JPH02223688. Fluid pressurizing pump. Nagayama Yukio, Miura Akira. Published 06.09.1990.
4. Patent JPS60125789. Control circuit for driving hydraulic mashine. Hamamoto Hiroaki. Published 05.07.1985.
5. Patent JPH06341410. Universal hydraulic device. Hiraga Yoshiji. Published 13.12.1994
6. Patent US5668457. Variable-frequency AC induction motor controller. Motmed Farzin, Martin Marietta Corp. Published 16.09.1997.
7. Patent JP2000027766. Energy saving type hydraulic pump operating device. Matsumoto Kinji. Published 25.01.2000.
8. Patent JP2001116004. Hydraulic control device, and control device for motor. Yamada Nakeo, Mitsui Katsuaki, Tagushi Sadanbu, Fukuda Masayuki, Imai Yukio. Published 27.04.2001.
9. Patent JP2002242845. Hydraulic system. Shibuya Fumiaki, Machida Tetsuji, Kihara Kazuyuki. Published 28.08.2002.
10. Patent JP2003070279. Electric power unit. Ohira Akihiko, Morota Takashi, Nakazawa Shunichi, Yoshida Seio. Published 07.03.2003
11. Patent JP2003172302. Inverter drive hydraulic unit. Oba Koichi, Ichikava Junichi. Published 20.06.2003.
12. Patent JP2004332563. Inverter control system of hydraulic pump. Ichihashi Tatsumi. Published 25.11.2004.
13. Patent JP2005014474. Hydraulic control device and method for injection molding mashine. Ishikawa Takashi. Published 20.01.2005.
14. Patent JP2005169807. Method for optimally controlling inverter of hydraulic molding mashine. Anmen Takashi, Murozaki Takashi, Miyuzaki Mitsutoshi, Nishida Ryozo, Nagae Katsutoshi, Tsuchiya Toshiki. Published 30.06.2005.
15. Patent JP2003056469. Hydraulic mashine unit. Matsumura Masao, Yamamoto Masao, Yamamoto Masakazu. Published 26.02.2003.

For citation: Galeev I.A. The Use of Pumps with Servomotors at Permanent Magnets in Heavy Hydraulic Presses. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 15-17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-730-10-15-17

Steam Curing of Silicate Brick in Autoclave

Number of journal: 10-2015
Autors:

Kuznetsova G.V.

DOI: https://doi.org/10.31659/0585-430X-2015-730-10-10-14
УДК: 691.316

 

AbstractAbout AuthorsReferences
The analysis and results of the study of conditions of silicate adobe brick steam curing are presented. Expansion of the range of silicate brick and manufacture of color brick in particular, requires a new approach to the technology. The stage of steam supply into the autoclave or the new separate stage of brick steam curing at atmospheric pressure is considered. Steam characteristic at the stage of 0–0,1 MPa is given. Variants of the product heating in the autoclave are analyzed in the form of graphs.
G.V. KUZNETSOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1 Zelenaya Street, 420043, Kazan, Russian Federation)

1. Khavkin L.M. Tekhnologiya silikatnogo kirpicha [Technology of sand-lime brick]. Moscow: Ekolit. 2011. 384 p.
2. Sazhnev. N.P, Sazhnev N.N., Sazhneva N.N., Golubev N.M. Proizvodstvo yacheistobetonnykh izdelii. Teoriya i praktika [Production of cellular concrete products. Theory and practice]. Minsk: Strinko. 2010. 464 p.
3. Mukhina T.G. Proizvodstvo silikatnogo kirpicha [Production of lime-sand brick]. Moscow: Vysshaya shkola. 1967. 179 p.
4. Vakhnin M.P., Anishchenko A.A. Proizvodstvo silikatnogo kirpicha [Production of lime-sand brick] Moscow: Vysshaya shkola. 1989. 200 p.
5. Kuznetsova G.V., Sannikova V.I. Influence of Hydrothermal Treatment on Quality of Colored Silicate Brick. Stroitel’nye Materialy [Construction Materials]. 2010. No. 9, pp. 36–39. (In Russian).
6. Rudchenko D.G. Autoclave treatment of products from cellular concrete. Ves’Beton: elektronnyi zhurnal (date of access 20.08.2015). (In Russian).
7. Bazhenov Yu.M. Tekhnologiya betona. Moscow: ASV. 2002. 500 p.

For citation: Kuznetsova G.V. Steam Curing of Silicate Brick in Autoclave. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 10-14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-730-10-10-14

Resistance of Silicate Materials in Water and Aggressive Media

Number of journal: 10-2015
Autors:

Kornev M.V.
Korneva T.P.

DOI: https://doi.org/10.31659/0585-430X-2015-730-10-8-9
УДК: 691.31

 

AbstractAbout AuthorsReferences
In a number of Russian normative-technical documents there is a prohibition against the use of silicate products in foundations, basements and socles of buildings and structures as well as in premises with humid and wet conditions (SP 15.13330, SP 28.13330, SP 70.13330). These limits are partly correct with regard to products of 50–70th of the XX century. During the last decades the technology of production was enhanced and the quality of manufactured products was significantly improved. The experience in the use of silicate materials under moisture impact in many countries of the West Europe (Germany, Netherland, Swiss, Austria) calls into question the fairness of limitation of their application. That’s why the Association of silicate products manufacturers sets the task to prove or disprove the proposition that silicate materials, when they are in water or under impact of salt solution, are destroyed or lose their consumer properties.
M.V. KORNEV, Candidate of Sciences (Engineering), Deputy Director for research and development (This email address is being protected from spambots. You need JavaScript enabled to view it.)
T.P. KORNEVA, Chief Foreman of Brick Shop

OOO «Silikatstroy» (111 Lenina Avenue, 606000 Dzerzhinsk, Nizhny Novgorod Oblast, Russian Federation)

1. Khavkin L.M. Tekhnologiya silikatnogo kirpicha [Technology of sand-lime brick]. Moscow: Stroiizdat. 1982. 384 p.
2. Cherepanov V.I., Nekrasova E.V., Chernykh N.A., Panchenko Yu.F. Waterproofness of Silicate Brick. Stroitel’nye Materialy [Construction Materials]. 2013. No. 9, pp. 10–11. (In Russian).

For citation: Kornev M.V., Korneva T.P. Resistance of Silicate Materials in Water and Aggressive Media. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 8-9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-730-10-8-9

Press-Molding Processes and Their Influence on Adobe Brick Quality

Number of journal: 10-2015
Autors:

Shmit’ko E.I.
Verlina N.A.

DOI: https://doi.org/10.31659/0585-430X-2015-730-10-5-7
УДК: 666.965.2

 

AbstractAbout AuthorsReferences
Scientific basis and practical results concerning the reasons for structure decompaction of pressed adobes of silicate and ceramic bricks are presented. The main reason for this phenomenon lies in the large surface energy of disperse particles of the solid phase, under the influence of which the water in the molding mixture becomes connected in the form of surface films or inter-granular capillaries. Under the impact of internal forces, self-compaction or self-decompaction of the molding mix occurs. An internal stress in the molded brick caused by hydro-static pressure of entrapped air is also important. Practical recommendations for optimizing the action of these factors are made. They are the control over humidity state of an initial molding mixture and the use of molding presses implementing the two-stage regime of press-molding.
E.I. SHMIT’KO, Doctor of Sciences (Engineering)
N.A. VERLINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State University of Architecture and Civil Engineering (84, 20-letiya Oktyabrya Street, 394006, Voronezh, Russian Federation)

1. Deryagin V.V., Churaev A.V., Ovcharenko F.D. ets. Voda v dispersnykh sistemakh [The water in dispersed systems]. Moscow: Khimiya. 1989. 288 s.
2. Shmit’ko E.I., Verlina N.A., Krylova A.V., Rezanov A.A. The evolution of the stress state of the “cement-water-builder” from the time of its preparation until complete solidification. Collection of articles on materials of the 7-th International Conference “Fracture mechanics of concrete, reinforced concrete and other building materials”. Voronezh. 2013. Vol. 2, pp. 35–44. (In Russian).
3. Shmit’ko E.I. Process management and structure of hardening concrete. Doct. Diss. (Engineering). Voronezh. 1994. 525 p.(In Russian).
4. Shmit’ko E.I., Titova M.V. Management of structure of the dispersion-grained material to the dispersion and internal forces. Stroitel’nye Materialy [Construction Materials]. 2007. No. 8, pp. 72–73. (In Russian).
5. Titova M.V. Optimization of press molding of products from fine concrete criterion depending on the energy dispersion of solid particles. Cand. Diss. (Engineering). Voronezh. 2007. 147 p. (In Russian).
6. Taman M.Kh.A. Management of processes of structure formation and hardening of the modified cement systems with regard to the conditions of dry and hot climate. Cand. Diss. (Engineering). Voronezh. 2011. 157 p. (In Russian).

For citation: Shmit’ko E.I., Verlina N.A. Press-Molding Processes and Their Influence on Adobe Brick Quality. Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 5-7. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-730-10-5-7

Features of Clay Rocks Application when Construction Material Production

Number of journal: 9-2015
Autors:

Lebedev M.S.
Zhernovsky I.V.
Fomina E.V.
Fomin A.E.

DOI: https://doi.org/10.31659/0585-430X-2015-729-9-67-72
УДК: 691.261

 

AbstractAbout AuthorsReferences
On the basis of the analysis of literature data and experimental results with due regard for characteristics of composition and properties of aluminum silicate raw materials from sedimentation mass, the opportunities of its usage in construction materials as a raw component for production of cement, ceramic, porous aggregates; as a component in composite binders of hydration, air and autoclaved hardening; additives, aggregates and fillers in cement, ceramic, organo-mineral systems are demonstrated. However, on the basis of genetic features of these non-traditional raw materials there are restrictions on its application. Therefore, in most cases, a modification is required to increase its efficiency. In this paper the expansion of fields of application of aluminum silicate rocks from sedimentation mass modified by heat treatment at 300–900оС is considered. Thermal modification makes it possible to improve qualitative and techno-economic characteristics of polyfunctional composites for the construction industry.
M.S. LEBEDEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.V. ZHERNOVSKY, Candidate of Sciences (Geology and Mineralogy)
E.V. FOMINA, Candidate of Sciences (Engineering)
A.E. FOMIN, Master Student

Belgorod State Technological University named after V.G. Shukhov(46, Kostyukov Street, Belgorod, 308012, Russian Federation)

1. Sidorenko A.V., Luneva O.N. K voprosu o litologicheskom izuchenii metamorficheskikh tolshch [About lithologic study of metamorphous mass]. Moscow: AN SSSR. 1961. 176 p.
2. Lebedev M.S., Potapova I.Yu., Lyutenko A.O. Features of aluminosilicate raw composition in the context of usage in road-building materials. Aktual’nye problemy gumanitarnykh i estestvennykh nauk. 2013. No. 5 (52), pp. 70–74. (In Russian).
3. Lebedev M.S., Zhernovsky I.V., Fomina E.V., Potapova I.Yu. Aspects of application of IR-spectroscopy for aluminosilicate raw components in construction materials sciences. «Engineering sciences – from theory to practice»: Proceedings of XXIV International correspondence research and practice conference. Novosibirsk. 2013, pp. 94–105. (In Russian).
4. Knigina G.I. Stroitel’nye materialy iz gorelykh porod [Construction materials from burnt rocks]. Moscow: Stroiizdat. 1966. 208 p.
5. Lebedev M.S. Rationale for choosing of temperature treatment for mineral components in constructions materials industry and road construction. Materia y VIII Midzynarodowej naukowi-praktycznej konferencji ≪Nauka: teoria i praktyka – 2012≫. Przemy l. Nauka i studia. 2012. Vol. 12, pp. 58–60. (In Russian).
6. Dvorkin L.I., Dvorkin O.L. Stroitel’nye materialy iz otkhodov promyshlennosti [Construction materials based on industrial wastes]. Rostov-on-Don: Feniks. 2007. 368 p.
7. Fomina E.V., Kozhukhova N.I., Pal’shina Yu.V., Strokova V.V., Fomin A.E. Effect of mechanoactivation on dimensional parameters of aluminosilicate rocks. Stroitel’nye Materialy [Construction Materials]. 2014. No. 10, pp. 28–33. (In Russian).
8. Khodykin E.I., Fomina E.V., Nikolaenko M.A., Lebedev M.S. Rational fields of application of coal strip mine raw materials. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2009. No. 3, pp. 125–128. (In Russian).
9. Lyutenko A.O., Lebedev M.S., Strokova V.V. Analysis of mining wastes as potential source of raw materials for road-building materials production. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura. 2013. Vol. 31 (50). Part 2. Stroitel’nye nauki, pp. 445–449. (In Russian).
10. Ravich B.M., Okladnikov V.P., Lygach V.N. i dr. Kompleksnoe ispol’zovanie syr’ya i otkhodov [Complex use of raw materials and wastes]. Moscow: Khimiya. 1988. 288 p.
11. Khodykin E.I. K probleme ispol’zovaniya toplivosoderzhashchikh otkhodov v promyshlennosti stroitel’nykh materialov: monografiya [To problem of application of fuel-bearing wastes in constructions materials industry: monograph]. Belgorod: BelGTASM. 2000. 40 p.
12. Khodykin E.I. Tekhnogennye mineral’nye dobavki dlya proizvodstva portlandtsementnogo klinkera: monografiya [Industrial mineral additives for Portland cement clinker producing: monograph]. Belgorod: BelGTASM. 2003. 96 p.
13. Strokova V.V., Solov’eva L.N., Maksakov A.V., Ogurtsova Yu.N. Structure formation mechanism for construction compositions with granulated nano-structuring aggregate. Stroitel’nye Materialy [Construction Materials]. 2011. No. 9, pp. 64–65. (In Russian).
14. Strokova V.V., Lozovaya S.Yu., Solov’eva L.N., Ogurtsova Yu.N. Properties forecasting of structural-insulating concrete on basis of granulated nano-structuring aggregate. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2011. No. 1, pp. 15–19. (In Russian).
15. Lyutenko A.O., Khodykin E.I., Shcheglov A.F., Nikolaenko M.A. Composite binder on basis of by-product rocks of coal deposits for soil stabilization in road construction. Stroitel’nye Materialy [Construction Materials]. 2009. No. 7, pp. 22–24. (In Russian).
16. Nosova A.N., Fomina E.V. Thermoactivation of the opal-cristobalite rock – waste of Korkino coal deposit. ≪Engineering sciences – from theory to practice≫: Proceding of XXIV International correspondence research and practice conference. Novosibirsk. 2013, pp. 106–111. (In Russian).
17. Volodchenko A.N., Khodykin E.I., Strokova V.V. To problem of application by-product raw materials of coal deposits for producing autoclave silicate materials. ≪Scientific studies, nanosystems and resource-saving technologies in constructions materials industry≫: book of reports of International research and practice conference. Belgorod. 2010. Part. 1, pp. 110–113. (In Russian).
18. Vinogradov B.N. Syr’e dlya proizvodstva avtoklavnykh silikatnykh betonov [Raw materials for autoclave silicate concretes production]. Moscow: Stroiizdat. 1966. 131 p. 19. Lesovik V.S. Povyshenie effektivnosti proizvodstva stroitel’nykh materialov s uchetom genezisa gornykh porod [Efficiency enhancement of construction materials taking into account the rock’s genesis]. Moscow: ASV. 2006. 526 p.
20. Strokova V.V., Alfimova N.I., Cherkasov V.S., Shapovalov N.N. Pressed silicate materials of autoclave hardening with the use of claydite production waste Stroitel’nye Materialy [Construction Materials]. 2012. No. 3, pp. 14–15. (In Russian).
21. Lebedev M.S., Strokova V.V., Zhernovsky I.V., Potapova I.Yu. Changing of properties of mineral fillers based on aluminosilicate raw materials under thermal modification. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 68–70. (In Russian).

For citation: Lebedev M.S., Zhernovsky I.V., Fomina E.V., Fomin A.E. Features of Clay Rocks Application when Construction Material Production. Stroitel’nye Materialy [Construction Materials]. 2015. No. 9, pp. 67-72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-729-9-67-72

Research of expanded polystyrene (EPS) stress relaxation under uniaxial loading conditions using statistical design method of experiments

Number of journal: 9-2015
Autors:

Vaitkus S.I.
Gnip I.J.

DOI: https://doi.org/10.31659/0585-430X-2015-729-9-57-66

 

AbstractAbout AuthorsReferences
The results of stress relaxation under uniaxial compression experimental research of expanded polystyrene products with the types of EPS 80/90/100/120 and EPS 150 at a constant ε0=(1,2±0,2)%, that was fixed at a specific compressive load σн(=0,35·σ10%) acting perpendicular to the surface of products, are presented. The method of mathematical and statistical experimental design optimization models taking into account the thickness of specimens is proposed to determine the relaxation coefficient Kr at the time t=8 h, the attenuation factor to reduce the compressive stress Katten and relaxation compliance Jr(t→∞). The graphical interpretation of the models is presented: depending level line of the relaxation coefficient Kr at the time t=8 h, relaxation resistance coefficient Kr and compliance with the relaxation Jr to t→∞. On the basis of quantitative experimental values of compliance Jr (t→∞) with the relaxation in the range of permanent compressive strain ε0=(1,2±0,2)%, the linear equations of interdependence between Jr (t→∞) and Jc(tn=122 days) are given. Empirical equations for the calculation of the established equilibrium stress at a relaxation are offered.
S.I VAITKUS, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.J. GNIP, Candidate of Sciences (Engineering)

Vilnius Gediminas Technical University (Scientific Institute «Insulation») (28, Linkmyanu Street, Vilnius, 08217, Lithuania)

1. Gnip I.J., Vaitkus S. Research of Creep polystyrene foam (EPS) for a constant compressive stress using a statistical design of experiments. Stroitel’nye Materialy [Construction Materials]. 2013. No. 10, pp. 49–56. (In Russian).
2. Vaitkus S., Granov V., Gnip I., et al. Stress relaxation in expanded polystyrene (EPS) under uniaxial loading conditions. 11th International Conference on Modern Building Materials, Structures and Techniques. MBMT 2013: Procedia Engineering. 57 (2013), pp. 1213–1222.
3. Koltunov M. Polzuchest’ i relaksatsiya [Creep and relaxation]. Moscow: Vysshaya shkola. 1976. 277 p.
4. Ward I. Mekhanicheslie svoistva tverdykh polimerov [Mechanical properties of solid polymers]. Translation from English. Moscow: Khimiya. 1975. 358 p.
5. Vedernikov I., Korshunov A., Polyakov L. Prediction creep and relaxation processes in foam plastic PS-1 with different density. 16th International conference “Physics if durability and plasticity of materials”. Samara, June 2006. (In Russian).
6. Malkin A., Askadsky, A., Kovriga V. Metody izmereniya mekhanicheskikh svoistv polimerov [Methods of measuring mechanical properties of polymeric materials]. Moscow: Khimiya. 1978. 332 p.
7. Imad A., Ouвkka, Dang Van K. аnd Mesmacgue. Analysis of the Viscoelastoplastic behavior of expaned polystyrene under copessive loading: experiments and modeling. Strength of materials. 2001. Vol. 33. No. 2, pp. 140–149.
8. Aivazyan S. Statisticheskoe issledovanie zavisimostei (Primeneie metodov korrelyatsionnogo i regressionnogo analizov i obrabotka rezul’tatov eksperimenta) [Statistical investigation of dependences (Application of the methods of correlation and regression analyses to processing experimental results]. Moscow: Metallurgiya. 1968. 228 p.
9. Askadskiy A. Deformatsiya polimerov [Deformations of polymers]. Moscow: Khimiya. 1973. 448 p.
10. Askadskiy A. Struktura i svoistva teplostoikikh polimerov [The structure and properties of heat-resistant polymers]. Moscow: Khimiya. 1981. 320 p.
11. Adler J., Markova E., GranovskyJ. Planirovanie eksperimenta pri poiske optimal’nykh uslovii [Experiment design for determining optimal conditions]. Moscow: Naukа. 1976. 279 p.
12. Draper N., Smith G. Prikladnoi regressionnyi analiz [The applied regression analysis]. Vol. 1 Translation from English. Moscow: Finances and statistics. 1986. 366 p.
13. Zaks L. Statisticheskoe otsenivanie [Statistical evaluation]. Translation from Germany. Moscow: Statistics. 1976. 598 p.
14. Achnazarova S., Kapharov V. Optimizatsiya eksperimenta v khimii i khimicheskoi tekhnologii [Optimizing the experiment in chemistry and chemical technology]. Moscow: Vysshaya shkola. 1978. 320 p.
15. Gnip I.J., Vaitkus S., Ker ulis V., Vejelis S. Long-term prediction of compressive creep development in expanded polystyrene. Polymer Testing. 2008. No. 27, pp. 378–391.
16. Gnip I.J., Vaitkus S., Ker ulis V., Vejelis S. Analytical description of the creep of expanded polystyrene (EPS) under long-term compressive loading. Polymer Testing. 2011. No. 30, pp. 493–500.
17. Chetyrkin Y. Статистические методы прогнозирования [Statistical methods of prediction]. Moscow: Statistika. 1977. 200 p.

For citation: Vaitkus S.I., Gnip I.J. Research of expanded polystyrene (EPS) stress relaxation under uniaxial loading conditions using statistical design method of experiments. Stroitel’nye Materialy [Construction Materials]. 2015. No. 9, pp. 57-66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-729-9-57-66

Structural Factors Ensuring the Frost Resistance of Cement Foam Concretes

Number of journal: 9-2015
Autors:

Slavcheva G.S.

DOI: https://doi.org/10.31659/0585-430X-2015-729-9-52-56
УДК: 691.327

 

AbstractAbout AuthorsReferences
For macro-porous concretes, a generalized interpretation of the mechanism of frost destruction with the substantiation of structure parameters criterial for its regulatory is proposed. Results of dilatometric studies of cement foam concretes, which revealed the interrelationship of the parameters of their structure with the measure of deformation of the material during the freezing of water-saturated samples, are presented.
G.S. SLAVCHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State University of Architecture and Сivil Engineering (84, 20-letija Oktjabrja Street, 394006, Voronezh, Russian Federation)

1. Guzeev E.A., Piradov K.A., Mamaev T.L. Evaluation of frost resistance of concrete in the parameters of fracture mechanics. Beton i zhelezobeton. 2000. No. 3, pp. 26–27. (In Russian).
2. Aleksandrovskii S.V. Aleksandrovskii V.S. Basic model theory of freezing wet porous bodies. Beton i zhelezobeton. 2005. No. 6. pp. 20–21. (In Russian).
3. Dobshits L.M. Physico-chemical model of the fracture of concrete under alternate maintenance-thawing. Vestnik grazhdanskikh inzhenerov. 2009. No. 3 (20), pp. 104–110. (In Russian).
4. Zotkin A.G. The air pores and frost resistance of concrete. Tekhnologii betonov. 2011. No. 5–6, pp. 18–21. (In Russian).
5. Leonovich S.N., Zaitsev Yu.V., Piradov K.A. The physical model of the kinetics of destruction of concrete in the heat and humidity effects // Vestnik grazhdanskikh inzhenerov. 2014. No. 1 (42), pp. 34–36 (In Russian).
6. Chernyshov E. M. Slavcheva, G. S. Frost destruction and frost resistance of building materials: a modern interpretation of the mechanism and management factors. Bulletin of the Department of construction Sciences RAASN. Vol. 9. Belgorod, 2005, pp. 447–459. (In Russian).
7. Slavcheva G.S., Chernyshov E.M. Influence of structure of high strength modified concrete on dilatometric effects when freezing. Vestnik inzhenernoi shkoly DVFU. Stroitel’nye materialy i izdeliya. 2015. No. 1 (22), pp. 63–70. (In Russian)
8. Sheinin A.M., Ekkel’ S.V. On the application of dilatometric method for predicting the frost resistance of concrete road. Stroitel’nye Materialy [Construction Materials]. 2004. No. 12, pp. 50–51. (In Russian).
9. Dikun A.D., Fishman V.Ya., Dikun V.N., Nagornyak I.N., Alekseev A.V. The practice of applying accelerated dilatometric method for determination frost resistance of concrete in accordance with GOST 10060.3–95. Stroitel’nye Materialy [Construction Materials]. 2009. No. 4, pp. 97–101. (In Russian).

For citation: Slavcheva G.S. Structural Factors Ensuring the Frost Resistance of Cement Foam Concretes. Stroitel’nye Materialy [Construction Materials]. 2015. No. 9, pp. 52-56. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-729-9-52-56

https://www.traditionrolex.com/10