Строительная 3D-печать сегодня: потенциал, проблемы и перспективы практической реализации

Журнал: №5-2021
Авторы:

Славчева Г.С.

DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36
УДК: 004.9:624

 

АннотацияОб авторахСписок литературы
Потенциал аддитивных технологий 3D-печати в строительстве связан с возможностью создания строительных объектов бионического дизайна, предполагающей сочетание свободы внешней формы и организованного внутреннего пространства конструкций объекта, в котором масса материала располагается только по линиям действующих напряжений. Это может обеспечить радикальное снижение массы материала в объеме конструкции, изменить принципы проектирования и строительства. Показано, что вероятность реализации данного потенциала связана с необходимостью новых методов расчета и проектирования, разработкой эффективных технологических комплексов, создания нового класса строительных композитов для печати. Технологические комплексы для 3D-печати должны отличаться мобильностью и универсальностью, обеспечивать роботизированную печать всех конструкций зданий. Материалы должны быть адаптированы к технологическим условиям печати и эксплуатации в тонких слоистых 3D-печатных конструкциях, так как от их характеристик в технологическом и эксплуатационном циклах зависят параметры технологических комплексов и характеристики 3D-печатных объектов. Показано, что в настоящее время отсутствие методов проектирования, нормативной базы, эффективных универсальных технологических комплексов, достаточной номенклатуры составов смесей для печати относятся к проблемам, которые необходимо решить для практической реализации технологии. Представлены подходы к решению данных проблем и краткое резюме научных и прикладных результатов коллектива специалистов Воронежского государственного технического университета в области проектирования составов смесей и управления свойствами строительных композитов для 3D-печати.
Г.С. СЛАВЧЕВА, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)

Воронежский государственный технический университет (394006, г. Воронеж, ул. 20-летия Октября, 84)

1. Tay Y., Panda B., Paul S, Noor M., Tan M. Leong K. 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping. 2017. No. 12 (3), pp. 261–276. https://doi.org/ 10.1080/17452759.2017.1326724
2. Mechtcherine V. at all. Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research. 2020. Vol. 132, pp. 106037. https://doi.org/ 10.1016/j.cemconres.2020.106037
3. Boss F., Wolfs R., Ahmed Z., Salet T. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping. 2016. No. 11 (3), pp. 209–225. https://dx.doi.org 10.1080/17452759.2016.1209867
4. Labonette N., Rønnquist A., Manum B., Rüther P., Additive construction: state-ofthe-art, challenges and opportunities. Autom. Constr. 2016. No. 72 (3), pp. 347–366. https://doi.org/10.1016/j.autcon.2016.08.026
5. Asprone D., Auricchio F., Menna C., Mercuri V. 3D printing of reinforced concrete element: Technology and design approach. Construction and Building materials. 2018. No. 165, pp. 218–231. https://dx.doi.org/ 10.1016/j.conbuildmat.2018.01.018
6. Hack N. and Lauer W.V. Mesh-mould: robotically fabricated spatial meshes as reinforced concrete formwork. Architectural Design. 2014. No. 84 (3), pp. 44–53.
7. Toutou Z., Roussel N., Lanos, C. The squeezing test: A tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research. 2005. No. 35 (10), pp. 1891–1899. https://dx.doi.org/10.1016/j.cemconres.2004.09.007
8. Russel N., Lanos C. Plastic Fluid Flow Parameters Identification Using a Simple Squeezing Test. Applied Rheology. 2003. No. 13 (3), pp. 3–5. https://dx.doi.org/ 10.1515/arh-2003-0009
9. Perrot A., Rangeard D., Mélinge Y., Estellé P., Lanos C. Extrusion Criterion for Firm Cement – Based Materials. Applied Rheology. 2009. No. 19, pp. 111–127. https://dx.doi.org/ 10.3933/ApplRheol-19-53042
10. Perrot A., Mélinge Y., Estellé P., Lanos, C. Vibro-extrusion: a new forming process for cement-based materials. Advances in Cement Research. 2009. No. 21 (3), pp. 125–133. https://dx.doi.org/10.1680/adcr.2008.00030
11. Perrot A., Mélinge Y., Rangeard D., Micaelli F., Estellé P., Lanos C., Estellé P. Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheologica Acta. Springer Verlag. 2012. No. 51 (8), pp. 743–754. https://dx.doi.org/10.1007/s00397-012-0638-6
12. Engmann J., Servais C., Burbidge A. S. Squeeze flow theory and applications to rheometry: A review. Journal of Non-Newtonian Fluid Mechanics. 2005. No. 132 (1–3), pp. 1–27. https://dx.doi.org/ 10.1016/j.jnnfm.2005.08.007
13. Wolfs R., Boss F., Salet T. Early age mechanical behaviour of 3D printed concrete: Numerical modeling and experimental testing. Cement and Concrete Research. 2018. No. 106, pp. 103–116. https://doi.org/ 10.1016/j.cemconres.2018.02.001
14. Shakor P., Sanjayan J., Nazari A., Nejadi S. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Construction and Building Materials. 2017. No. 138, pp. 398–409. https://dx.doi.org/ 10.1016/j.conbuildmat.2017.02.037
15. Wolfs R.J.M., Boss F.P., Salet T.A.M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research. 2019. Vol. 119, pp. 132–140. (In English) https://doi.org/10.1016/j.cemconres.2019.02.017
16. Panda B., Lim J.H., Tan M.J. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Composites Part B: Engineering. 2019. Vol. 165, pp. 563–571. (In English) https://doi.org/10.1016/j.compositesb.2019.02.040
17. Buswella R.A. at all. 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research. 2018. Vol. 112, pp. 37–49. https://doi.org/10.1016/j.cemconres.2018.05.006
18. Ma S., Qian Y., Kawashima S. Experimental and modeling study on the non-linear structural build-up of fresh cement pastes incorporating viscosity modifying admixtures. Cement and Concrete Research. 2018. No. 108, pp. 1–9. https://dx.doi.org/10.1016/j.cemconres.2018.02.022
19. Feng P., Menga X., Chenb J., Yea L. Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials. 2015. No. 93, pp. 486–497. dx.doi.org/ 10.1016/j.conbuildmat.2015.05.132
20. Paul S.C., Tay Y.W.D., Panda B., Tan M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering. 2018. No. 18 (1), pp. 311–319. https://dx.doi.org/ 10.1016/j.acme.2017.02.008
21. Ngo T.D. Kashani A., Imbalzano G., Nguyen K., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. Vol. 143. 103 p. https://dx.doi.org/ 10.1016/j.compositesb.2018.02.012
22. Malaeb Z., Hachem H., Tourbah A., et al. 3D Concrete Printing: Machine and Mix Design. International Journal of Civil Engineering and Technology. 2015. Vol. 6 (4), pp. 14–22.
23. Kazemian A. Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials. 2017. Vol. 145, pp. 639–647. https://dx.doi.org/ 10.1016/j.conbuildmat.2017.04.015
24. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Materials and Structures. 2012. No. 45 (8), pp. 1221–1232. https://dx.doi.org/10.1617/s11527-012-9828-z
25. Славчева Г.С., Артамонова О.В. Реологическое поведение дисперсных систем для строительной 3D-печати: проблема управления на основе возможностей арсенала «нано» // Нанотехнологии в строительстве: научный интернет-журнал. 2018. Т. 10. № 3. С. 107–122. https:// dx.doi.org/10.15828/2075-8545-2018-10-3-107-122
25. Slavcheva G.S., Artamonova O.V. The rheological behavior of disperse systems for 3D printing in constrcution: the problem of control and possibility of «nano» tools application. Nanotehnologii v stroitel’stve. 2018. Vol. 10. No. 3, pp. 107–122. (In Russian). https:// dx.doi.org/10.15828/2075-8545-2018-10-3-107-122
26. Славчева Г.С., Артамонова О.В. Управление реологическим поведением смесей для строительной 3D-печати: экспериментальная оценка возможностей арсенала «нано» // Нанотехнологии в строительстве: научный интернет-журнал. 2019. Т. 11. № 3. С. 325–334. (In Russian). https:// 10.15828/2075-8545-2019-11-3-325-334
26. Slavcheva G.S., Artamonova O.V. The control of rheological behaviour for 3D-printable building mixtures: experimental evaluation of «nano» tools prospects. Nanotehnologii v stroitel’stve. 2019, Vol. 11. No. 3, pp. 325–334. (In Russian). https://10.15828/2075-8545-2019-11-3-325-334
27. Славчева Г.С., Шведова М.А., Бабенко Д.С. Анализ и критериальная оценка реологического поведения смесей для строительной 3D-печати // Строительные материалы. 2018. № 12. С. 34–40. https://doi.org/10.31659/0585-430X-2018-766-12-34-40
27. Slavcheva G.S., Shvedova M.A., Babenko D.S. Analysis and criteria assessment of rheological behavior of mixes for construction 3-D printing. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 34–40. (In Russian). https://doi.org/10.31659/0585-430X-2018-766-12-34-40
28. Slavcheva G.S., Artamonova O.V. Rheological behavior of 3D printable cement paste: criterial evaluation. Magazine of Civil Engineering. 2018, No. 08 (84). https://doi: 10.18720/MCE.84.10.
29. Славчева Г.С., Бритвина Е.А., Ибряева А.И. Строительная 3D-печать: оперативный метод контроля реологических характеристик смесей // Вестник инженерной школы ДВФУ. Строительст-во. 2019. № 4 (41). С. 134–143. http://www.dx.doi.org/10.24866/2227-6858/2019-4-14
29. Slavcheva G., Britvina E., Ibryaeva A. 3D-build printing: the operational method for verifying the cement mixture properties / FEFU: School of Engineering Bulletin. 2019. No. 4 (41), pp. 134–143. (In Russian). http://www.dx.doi.org/10.24866/2227-6858/2019-4-14
30. Slavcheva G.S., Artamonova O.V. Rheological Behavior and Mix Design for 3d Printable Cement Paste. Key Engineering Materials. Modern Materials and Manufacturing. 2019. Vol. 799, pp. 282–287. 10.4028/www.scientific.net/KEM.799.282
31. Slavcheva G.S., Artamonova O.V., Shvedova M.A. Effect of viscosity modifiers on structure formation in cement systems for construction 3D printing. Inorganic Materials. 2021. Vol. 57, pp. 94–100. http://www.10.1134/S0020168521010143
32. Slavcheva G. S., Artamonova O.V., Babenko D.S., Ibryaeva A.I. Effect of limestone filler dosage and granulometry on the 3D printable mixture rheology IOP Conf. Series: Materials Science and Engineering. V International Conference Safety Problems of Civil Engineering Critical Infrastructures. 2020. Vol. 972. 012042. http://www.10.1088/1757-899X/972/1/012042
33. Славчева Г.С., Акулова И.И., Вернигора И.В. Концепция и эффективность применения 3D-печати для дизайна городской среды // Жилищ-ное строительство. 2020. № 3. С. 49–55. DOI: https://doi.org/10.31659/0044-4472-2020-3-49-55
33. Slavcheva G.S., Akulova I.I., Vernigora I.V. Concept and effectiveness of 3D printing for urban environment design. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 3, pp. 49–55. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-3-49-55

Для цитирования: Славчева Г.С. Строительная 3D-печать сегодня: потенциал, проблемы и перспективы практической реализации // Строительные материалы. 2021. № 5. С. 28–36. DOI: https://doi.org/10.31659/0585-430X-2021-791-5-28-36


Печать   E-mail