Штукатурные покрытия как регулятор параметров микроклимата в помещении: обзор теоретических и экспериментальных исследований

Журнал: №7-2021
Авторы:

Строкова В.В.,
Сивальнева М.Н.,
Неровная С.В.,
Второв Б.Б.

DOI: https://doi.org/10.31659/0585-430X-2021-793-7-32-72
УДК: 666.9.015.3

 

АннотацияОб авторахСписок литературы
Представлен многокритериальный анализ теоретических и экспериментальных исследований получения и применения штукатурных смесей, способов повышения их эффективности за счет корректировки рецептуры и определение перспектив дальнейшего развития. Проведена оценка публикационной активности, пик которой приходится на 2020 г., и заинтересованности различных научных школ. Анализ результатов экспериментальных исследований, выполненных как отечественными, так и зарубежными авторами за последнее десятилетие и представленных в открытых рецензируемых источниках, позволил классифицировать штукатурные смеси по виду вяжущих, назначению, областям применения и виду реализуемой продукции. На основании накопленного эмпирического материала проведено обобщение, структурирование и анализ имеющихся данных по разработке рациональных составов по таким критериям, как вид вяжущего, заполнителя, функциональных добавок, соотношение компонентов, физико-механические и функциональные свойства как смесей, так и штукатурных покрытий на их основе. Выделены основные компоненты, регулирующие качество штукатурных смесей, растворов и покрытий. Классическими вяжущими системами для штукатурных смесей являются цементная, известковая, гипсовая и цементно-известковая. С целью снижения расхода цемента либо придания специальных свойств в составе штукатурных смесей используются смешанные (композиционные) вяжущие. Среди заполнителей различного состава и гранулометрии применяют как природные сырьевые материалы – пески, измельченные гравийно-галечные смеси, так и отходы различных производств – отсевы дробления различных видов пород, гранулированное пеностекло, вспененное вулканическое стекло, молотый газобетон, обезвоженные шламы и хвосты флотации, шлаки, золы, бумага и т. д. Наполнителями выступают природные пуццоланы, гидросиликаты кальция, известковая пыль, микросферы и пр. Большую группу составляют добавки: воздухововлекающие, армирующие, пластифицирующие, гидрофобизирующие, редиспергируемые, суперабсорбирующие, фотокаталитические, материалы фазового перехода и др. Показано, что актуальным направлением производства функциональных штукатурных смесей является разработка решений по созданию составов с повышенной экологичностью, биопозитивностью и медико-валеологическими параметрами штукатурных покрытий с целью формирования благоприятных микроклиматических условий в помещении для комфортной среды жизнедеятельности человека.
В.В. СТРОКОВА1, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
М.Н. СИВАЛЬНЕВА1, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
С.В. НЕРОВНАЯ1, аспирант;
Б.Б. ВТОРОВ2, канд. техн. наук

1 Белгородский государственный технологический университет им. В.Г. Шухова (308012, г. Белгород, ул. Костюкова, 46)
2 ООО «Баумит» (141982, Московская обл., г. Дубна, ул. Университетская, 11)

1. Теличенко В.И., Бенуж А.А., Рудь Н.С., Йейе О.У. Параметры проектирования комфортной среды жизнедеятельности в нормативной документации // Промышленное и гражданское строительство. 2020. № 5. С. 51–56. https://doi.org/10.33622/0869-7019.2020.05.51-56
1. Telichenko V.I., Benuzh A.A., Rud N.S., Yeye O.W. Design parameters of a comfortable living environment in the normative documentation. Promyshlennoe i grazhdanskoe stroitel'stvo. 2020. No. 5, pp. 51–56. (In Russian). DOI: 10.33622/0869-7019.2020.05.51-56.
2. Дамбергер Б. Здоровое строительство. Здоровая жизнь / Под ред. Ю. Пош. Вопфинг: Издательство: Viva Forschungspark der Baumit Beteiligungen GmbH. 2019. 150 с. https://baumit.ru/files/ru/Brochures_pdf/VIVA_________.pdf
2. Damberger B. Healthy construction. Healthy life / Ed. Yu Posh. Wopfing: Publisher: Viva Forschungspark der Baumit Beteiligungen GmbH. 2019. 150 p. https://baumit.ru/files/ru/Brochures_pdf/VIVA_________.pdf (In Russian).
3. Махортова Я.И., Разаков М.А., Трофимова И.В. Экологическое строительство зданий и сооружений. Экология и строительство. 2020. № 2. С. 27–35. https://doi.org/10.35688/2413-8452-2020-02-004
3. Makhortova Ya.I., Razakov M.A., Trofimova I.V. Ecological construction of buildings and structures. Ekologiya i stroitel'stvo. 2020. No. 2, pp. 27–35. (In Russian). https://doi.org/10.35688/2413-8452-2020-02-004
4. Теличенко В.И., Бенуж А.А., Морозов Д.Н. Создание национальной системы «зеленых» стандартов в РФ. Строительные материалы, оборудование, технологии XXI века. 2019. № 3–4 (242–243). С. 10–11.
4. Telichenko V.I., Benuzh A.A., Morozov D.N. Creation of a national system of "green" standards in the Russian Federation. Stroitel'nye materialy, oborudovaniye, tekhnologii XXI veka. 2019. No. 3–4 (242–243), pp. 10–11. (In Russian).
5. Telichenko V., Benuzh A., Eames G., Orenburova E., Shushunova N. Development of green standards for construction in Russia. Procedia Engineering. 2016. Vol. 153, pp. 726–730. https://doi.org/10.1016/j.proeng.2016.08.233
6. Бакаева Н.В., Натарова А.Ю., Игин А.Ю. Нормативное регулирование экологической безопасности строительства с помощью «зеленых» стандартов. Известия Юго-Западного государственного университета. 2016. № 4 (67). С. 68–79.
6. Bakaeva N.V., Natarova A.Yu., Igin A.Yu. Regulatory regulation of environmental safety of construction using "green" standards. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. 2016. No. 4 (67), pp. 68–79. (In Russian).
7. Wei W., Ramalho O., Mandin C. Indoor air quality requirements in green building certifications. Building and Environment. 2015. Iss. 92, pp. 10–19. https://doi.org/10.1016/j.buildenv.2015.03.035
8 Yue X., Ma N.L., Sonne C., Guan R., Lam S.S., Van Le Q., Chen X., Yang Y., Gu H., Rinklebe J., Peng W. Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation. Journal of Hazardous Materials. 2021. Vol. 405. 124138. https://doi.org/10.1016/j.jhazmat.2020.124138
9. Cascione V., Maskell D., Shea A., Walker P., Mani M. Comparison of moisture buffering properties of plasters in full scale simulations and laboratory testing. Construction and Building Materials. 2020. Vol. 252. 119033. https://doi.org/10.1016/j.conbuildmat.2020.119033
10. Cascione V., Maskell D., Shea A., Walker P. The moisture buffering performance of plasters when exposed to simultaneous sinusoidal temperature and RH variations. Journal of Building Engineering. 2021. Iss. 34. 101890. https://doi.org/10.1016/j.jobe.2020.101890
11. Lü X., Lu T., Kibert C., Zhang Q., Hughes M. A novel methodology and new concept of structural dynamic moisture buffering for modeling building moisture dynamics. Building and Environment. 2020. Vol. 180. 106958. https://doi.org/10.1016/j.buildenv.2020.106958
12. Yang M., Kong F., He X. Moisture buffering effect of hygroscopic materials under wall moisture transfer. Indoor and Built Environment. 2020. https://doi.org/10.1177/1420326x20975835
13. Lelièvre D., Colinart T., Glouannec P. Modeling the moisture buffering behavior of a coated biobased building material by including hysteresis. Energy Procedia. 6th International Building Physics Conference, IBPC 2015. Politecnico di TorinoTorino, Italy. 14-17 June 2015. Vol. 78, pp. 255–260. https://doi.org/10.1016/j.egypro.2015.11.631
14. Brenton K. Kreiger, Wil V. Srubar III. Moisture buffering in buildings: A review of experimental and numerical methods. Energy and Buildings. 2019. Vol. 202. 109394. https://doi.org/10.1016/j.enbuild.2019.109394
15. Pavlík Z., Fořt J., Pavlíková M., Pokorný J., Trník A., Černý R. Modified lime-cement plasters with enhanced thermal and hygric storage capacity for moderation of interior climate. Energy and Buildings. 2016. Vol. 126, pр. 113–127. https://doi.org/10.1016/j.enbuild.2016.05.004
16. Pavlík Z., Trník A., Fořt J., Maděra J., Černý R. Application of latent-heat-storage building envelope systems for increasing energy efficiency in the building sector. WIT Transactions on Ecology and the Environment. 2015. Vol. 195, pp. 163–172. http://doi.org/10.2495/ESUS150141
17. Veiga R. Air lime mortars: What else do we need to know to apply them in conservation and rehabilitation interventions? A review. Construction and Building Materials. 2017. Vol. 157, pp. 132–140. http://doi.org/10.1016/j.conbuildmat.2017.09.080
18. Kočí V., Maděra J. Hygrothermal modelling of wall assemblies: Quantification of convenient conditions for biofilms growth. AIP Conference Proceedings: Central European Symposium on Thermophysics. CEST 2019. 2019. Vol. 2133. 020021. https://doi.org/10.1063/1.5120151
19. Wasserbauer R., Rácová Z., Loušová I., Lecák M. The occurrence of cyanobacteria and green algae on facades of historical sacral buildings. Advanced Materials Research 18th Conference of Research Institute for Building Materials Ecology and New Building Materials and Products, ICEBMP 2014. Cerna Hora, Czech Republic. 3–5 June 2014. Vol. 1000, pр. 243–246. https://doi.org/10.4028/www.scientific.net/amr.1000.243
20. Petković J., Huinink H.P., Pel L., Kopinga K., van Hees R.P.J. Moisture and salt transport in three-layer plaster/substrate systems. Construction and Building Materials. 2010. Vol. 24. Iss. 1, pр. 118–127. https://doi.org/10.1016/j.conbuildmat.2009.08.014
21. Vysvaril M., Topolar L., Dvorak R. Acoustic insulation properties of lime mortars with natural lightweight aggregate. MATEC Web of Conferences 4TH Central European symposium on building physics (CESBP 2019). 2019. Vol. 282. 02075. https://doi.org/10.1051/matecconf/201928202075
22. Kočí, V., Maděra, J., Jerman, M. et al. Application of waste ceramic dust as a ready-to-use replacement of cement in lime-cement plasters: an environmental-friendly and energy-efficient solution. Clean Technologies and Environmental Policy. 2016. Vol. 18, pp. 1725–1733. https://doi.org/10.1007/s10098-016-1183-2
23. Fernandez F., Germinario S., Basile R., Mangiapane M., Maravelaki P. Development of eco-friendly and self-cleaning lime-pozzolan plasters for bio-construction and cultural heritage. Buildings. 2020. Vol. 172. Iss. 10, pp. 1–12. https://doi.org/10.3390/buildings10100172
24. Garcia-Cuadrado J., Santamaria-Vicario I., Rodriguez A. Lime-cement mortars designed with steelmaking slags as aggregates and validation study of their properties using mathematical models. Construction and Building Materials. 2018. Vol. 188, pр. 210–220. https://doi.org/10.1016/j.conbuildmat.2018.08.093
25. Giosuè C., Pierpaoli M., Mobili A., Ruello M.L., Tittarelli F. Influence of binders and lightweight aggregates on the properties of cementitious mortars: From traditional requirements to indoor air quality improvement. Materials. 2017. Vol. 10. Iss. 8. 978. https://doi.org/10.3390/ma10080978
26. Giosuè C., Pierpaoli M., Mobili A., Ruello M.L., Tittarelli F. Multifunctional Lightweight mortars for indoor applications to improve comfort and health of occupants: thermal properties and photocatalytic efficiency. Frontiers in Materials. 2020. Vol. 7. 255. https://doi.org/10.3389/fmats.2020.00255
27. Giosuè C., Mobili A., Citterio B., Biavasco F., Ruello M.L., Tittarelli F. Innovative hydraulic lime-based finishes with unconventional aggregates and TiO2 for the improvement of indoor air quality. Manufacturing Review. 2020. Vol. 7, p. 13. https://doi.org/10.1051/mfreview/2020010
28. Giosuè C., Mobili A., Yu Q.L., Brouwers H.J.H., Ruello M.L., Tittarelli F. Properties of multifunctional lightweight mortars containing zeolite and natural fibers. Journal of Sustainable Cement-Based Materials. 2019. Vol. 8. Iss. 4, pp. 214–227. https://doi.org/10.1080/21650373.2019.1615012
29. Giosuè C., Yu Q.L., Ruello M.L., Tittarelli F., Brouwers H.J. Effect of pore structure on the performance of photocatalytic lightweight lime-based finishing mortar. Construction and Building Materials. 2018. Vol. 171, pp. 232–242. https://doi.org/10.1016/j.conbuildmat.2018.03.106
30. Mobili A., Belli A., Giosuè C., Pierpaoli M., Bastianelli L., Mazzoli A., Ruello M.L., Bellezze T., Tittarelli F. Mechanical, durability, depolluting and electrical properties of multifunctional mortars prepared with commercial or waste carbon-based fillers. Construction and Building Materials. 2021. Vol. 283. 122768. https://doi.org/10.1016/j.conbuildmat.2021.122768
31. Jerman M., Scheinherrová L., Medveď I., Krejsová J., Doleželová M., Bezdička P.,Černý R. Effect of cyclic wetting and drying on microstructure, composition and length changes of lime-basedplasters. Cement and Concrete Composites. 2019. Vol. 104. 103411. https://doi.org/10.1016/j.cemconcomp.2019.103411
32. Čáchová M., Koňáková D., Vejmelková E., Vyšvařil M., Bayer, P. Hygric and mechanical parameters of ternary binder based plasters lightweighted by expanded perlite. IOP Conference Series: Materials Science and Engineering. 21st International Conference on Building Materials. Products and Technologies. ICBMPT 2018. Blansko-Ceskovice, Czech Republic. 29–31 May 2018. Vol. 379. Iss. 1. 012004. https://doi.org/10.1088/1757-899X/379/1/012004
33. Santos T., Gomes M.I., Silva A.S., Ferraz E., Faria P. Comparison of mineralogical, mechanical and hygroscopic characteristic of earthen, gypsum and cement-based plasters. Construction and Building Materials. 2020. Vol. 254. 119222. https://doi.org/10.1016/j.conbuildmat.2020.119222
34. Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Pavlík Z. Influence of wood-based biomass ash admixing on the structural, mechanical, hygric, and thermal properties of air lime mortars. Materials. 2019. Iss. 12. 2227. https://doi.org/10.3390/ma12142227
35. Golaszewska M., Golaszewski J., Cygan G., Bochen J. Assessment of the impact of inaccuracy and variability of material and selected technological factors on physical and mechanical properties of fresh masonry mortars and plasters. Materials. 2020. Vol. 13. Iss. 6, 1382. https://doi.org/10.3390/ma13061382
36. Zemanova L., Pokorny J., Pavlikova M., Pavlik Z. Hygric properties of cement-lime plasters with incorporated lightweight mineral admixture. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 603. Iss. 2. 022046. http://doi.org/10.1088/1757-899X/603/2/022046
37. Pokorný, J., Pavlíková, M., Pavlík, Z. Properties of cement-lime render containing perlite as lightweight aggregate. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 596. Iss. 1. 012015. http://doi.org/10.1088/1757-899X/596/1/012015
38. Vyšvařil M., Pavlíková M., Záleská M., Bayer P., Pavlík Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Construction and Building Materials. 2020. Vol. 263. 120617. https://doi.org/10.1016/j.conbuildmat.2020.120617
39. Benyahia A., Choucha S., Ghrici C., Omran A. Influence of limestone dust and natural pozzolan on engineering properties of self-compacting repair mortars. Frattura ed Integrità Strutturale. 2018. Iss. 45, pp. 135–146. https://doi.org/10.3221/IGF-ESIS.45.11
40. Радаев С.С., Кудоманов М.В., Горгодзе Г.А. Эффективность использования комплексных добавок и смешанного вяжущего в производстве штукатурных смесей. Вестник Тюменского государственного университета. Экология и природопользование. 2014. № 5. С. 154–160.
40. Radaev S.S., Kudomanov M.V., Gorgodze G.A. Efficiency of using complex additives and mixed binder in the production of plaster mixtures. Vestnik Tyumenskogo gosudarstvennogo universiteta. Ekologiya i prirodopol'zovaniye. 2014. No. 5, pp. 154–160. (In Russian).
41. Кузьмина В.П. Финишные технологии отделки малоэтажных зданий. Сухие строительные смеси. 2013. № 1. С. 34–37.
41. Kuzmina V.P. Finishing technologies for finishing low-rise buildings. Sukhiye stroitel'nyye smesi. 2013. No. 1, pp. 34–37. (In Russian).
42. Логанина В.И., Фролов М.В., Рябов М.А. Теплоизоляционные известковые сухие строительные смеси для отделки стен из газобетона. Вестник МГСУ. 2016. № 5. С. 82–92.
42. Loganina V.I., Frolov M.V., Ryabov M.A. Heat-insulating lime dry building mixtures for aerated concrete walls. Vestnik MGSU. 2016. No. 5, pp. 82–92. (In Russian).
43. Харитонов А.М., Николаев В.А. Штукатурный состав для комплексной защиты кирпичных стен от солевой коррозии. Инновации и инвестиции. 2019. № 3. С. 230–234.
43. Kharitonov A.M., Nikolaev V.A. Plaster for complex protection of brick walls against salt corrosion. Innovatsii i investitsii. 2019. No. 3, pp. 230–234. (In Russian).
44. Čáchová M., Koťátková J., Koňáková D., Vejmelková E., Bartoňková E., Černý R. Hygric properties of lime-cement plasters with the addition of a pozzolana. Procedia engineering international conference on ecology and new building materials and products, ICEBMP 2016. Cerna Hora, Czech Republic. 31 May–2 June 2016. Vol. 151, pр. 127–132. https://doi.org/10.1016/j.proeng.2016.07.403
45. Jerman M., Žumár J. Experimental determination of material characteristics of new type of plaster. Materials Science Forum 7th International Conference on Building Materials. Zahradky, Czech Republic. 20–22 May 2015. Vol. 824, pр. 21–26. https://doi.org/10.4028/www.scientific.net/msf.824.21
46. Palszegi T., Holubek M. Effective permittivity modelling of lime-cement perlite plaster. Therophysics 2011 - Сonference proceedings. 2011, pр. 174-179.
47. Чекардовский М.Н., Гусева К.П., Лебедев С.Ю. Теплоизоляционные перлитовые штукатурки. Инженерно-строительный вестник Прикаспия: научно-технический журнал. 2020. № 2 (32). С. 88–91.
47. Chekardovsky M.N., Guseva K.P., Lebedev S.Yu. Heat-insulating perlite plasters. Inzhenerno-stroitel'nyy vestnik Prikaspiya: nauchno-tekhnicheskiy zhurnal. 2020. No. 2 (32), pp. 88–91. (In Russian).
48. Сопегин Г.В., Семейных Н.С., Рустамова Д.Ч. Оценка влияния стеклосодержащего компонента на свойства гипсового вяжущего и сухих строительных смесей. Вестник Томского государственного архитектурно-строительного университета. 2020. Т. 22. № 5. С. 129–138. https://doi.org/10.31675/1607-1859-2020-22-5-129-138
48. Sopegin G.V., Semeinykh N.S., Rustamova D.Ch. Assessment of the effect of the glass-containing component on the properties of gypsum binder and dry building mixtures. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. 2020. Vol. 22. No. 5, pp. 129–138. (In Russian). https://doi.org/10.31675/1607-1859-2020-22-5-129-138
49. Peterková J., Zach J., Sedlmajer M. Development of advanced plasters for insulation and renovation of building constructions with regard to their hygrothermal behavior. Cement and Concrete Composites. 2018. Vol. 92, pр. 47–55. https://doi.org/10.1016/j.cemconcomp.2018.05.014
50. Логанина В.И., Фролов М.В., Рябов М.А. Известковый состав для отделки стен зданий из газобетона. Вестник ЮУрГУ. Сер. Строительство и архитектура. 2016. Том 16. № 2. С. 33–37. https://doi.org/10.14529/build160206
50. Loganina V.I., Frolov M.V., Ryabov M.A. Lime composition for wall decoration of aerated concrete buildings. Vestnik YUUrGU. Seriya «Stroitel'stvo i arkhitektura». 2016. Vol. 16. No. 2, pp. 33–37. (In Russian). https://doi.org/10.14529/build160206
51. Логанина В.И., Фролов М.В., Исследование синергетического эффекта добавки на основе гидросиликатов и гидроалюмосиликатов кальция. Вестник БГТУ им. В.Г. Шухова. 2019. № 7. С. 8-13. https://doi.org/10.34031/article_5d35d0b645d6f8.37881085
51. Loganina V.I., Frolov M.V. Study of the synergistic effect of an additive based on hydrosilicates and hydroaluminosilicates of calcium. Vestnik BSTU named after V.G. Shukhov. 2019. No. 7, pp. 8–13. (In Russian). https://doi.org/10.34031/article_5d35d0b645d6f8.37881085
52. Чулкова И.Л. Известково-реставрационные композиты. Вестник СибАДИ. 2012. № 5 (27). С. 71–77.
52. Chulkova I.L. Lime-restoration composites. Vestnik SibADI. 2012. No. 5 (27), pp. 71–77. (In Russian).
53. Логанина В.И., Фролов М.В., Скачков Ю.П. Оценка влияния отделочных покрытий на изменение влажностного режима газобетонной ограждающей конструкции. Вестник МГСУ. 2018. Т. 13. № 11. С. 1349–1356. https://doi.org/10.22227/1997-0935.2018.11.1349-1356
53. Loganina V.I., Frolov M.V., Skachkov Yu.P. Assessment of the effect of finishing coatings on the change in the humidity regime of aerated concrete enclosing structures. Vestnik MGSU. 2018. Vol. 13. No. 11, pp. 1349–1356. (In Russian). https://doi.org/10.22227/1997-0935.2018.11.1349-1356
54. Дворкин Л.И., Житковский В.В., Сухие строительные смеси с добавкой известково-карбонатной пыли. Сухие строительные смеси. 2018. № 4. С. 13–16.
54. Dvorkin L.I., Zhitkovsky V.V. Dry building mixtures with the addition of lime-carbonate dust. Sukhiye stroitel'nyye smesi. 2018. No. 4, pp. 13–16. (In Russian).
55. Кандаев А.В., Губарь В.Н., Сравнительный анализ водостойкости реставрационных растворов. Вестник Донбасской национальной академии строительства и архитектуры. 2020. № 4. С. 91–95.
55. Kandaev A.V., Gubar V.N. Comparative analysis of the water resistance of restoration solutions. Vestnik Donbasskoy natsional'noy akademii stroitel'stva i arkhitektury. 2020. No. 4, pp. 91–95. (In Russian).
56. Пугин К.Г. Строительная смесь с бактерицидными свойствами. Вестник БГТУ им. В.Г. Шухова. 2019. № 4. С. 40–46. https://doi.org/10.34031/article_5cb1e65debc933.57283217
56. Pugin K.G. Building mixture with bactericidal properties. Vestnik BSTU named after V.G. Shukhov. 2019. No. 4, pp. 40–46. (In Russian). https://doi.org/10.34031/article_5cb1e65debc933.57283217
57. Ghosh A., Ghosh A., Neogi S. Reuse of fly ash and bottom ash in mortars with improved thermal conductivity performance for buildings. Heliyon. 2018. Vol. ‏4. Iss. 11. e00934. https://doi.org/10.1016/j.heliyon.2018.e00934
57. Белых С.А., Кудряков А.И., Чикичев А.А. Сухая строительная смесь с повышенной адгезионной прочностью для отделки кирпичных поверхностей во влажных помещениях. Вестник Томского государственного архитектурно-строительного университета. 2017. №. 1(60). С. 122–133.
58. Belykh S.A., Kudryakov A.I., Chikichev A.A. Dry mortar with increased adhesive strength for finishing brick surfaces in damp rooms. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. 2017. No. 1 (60), pp. 122–133. (In Russian).
59. Ruello M.L., Bellezze T., Corinaldesi V., Donnini J. Eusebi A.L., Fatone F. Fava G., Favoni O., Fratesi R., Giosué C., Giuliani G., Marcellini M., Mazzoli A., Mobili A., Roventi G., Tittarelli F. Sustainability in construction materials: Fromwaste valorization to circular economy. The first outstanding 50 years of “Università politecnica delle marche”: research achievements in physical sciences and engineering. 2019, pp. 279–296. https://doi.org/10.1007/978-3-030-32762-0_16
60. Vares M.-L., Ruus A., Nutt N., Kubjas A., Raamets J. Determination of paper plaster hygrothermal performance: Influence of different types of paper on sorption and moisture buffering. Journal of Building Engineering. 2021. Iss. 33. 101830. https://doi.org/10.1016/j.jobe.2020.101830
61. Soolepp M., Ruus A., Nutt N., Raamets J., Kubjas A. Hygrothermal performance of paper plaster: Influence of different types of paper and production methods on moisture buffering. E3S Web of Conferences. 12th Nordic Symposium on Building Physics, NSB 2020; Tallinn, Estonia. 6-9 September 2020. Vol. 172. 14010. http://doi.org/10.1051/e3sconf/202017214010
62. Samkova A., Kulhavy P., Tunakova V., Petru M. Improving electromagnetic shielding ability of plaster-based composites by addition of carbon fibers. Advances in materials science and engineering. 2018. Vol. 2018. 3758364. https://doi.org/10.1155/2018/3758364
63. Kulhavý P., Samková A., Petru M., Pechociakova M. Improvement of the acoustic attenuation of plaster composites by the addition of short-fibre reinforcement. Advances in materials science and engineering. 2018. Vol. 2018. 7356721. https://doi.org/10.1155/2018/7356721
64. Rachedi M., Kriker A. Thermal properties of plaster reinforced with date palm fibers. Civil and environmental engineering. 2020. Vol. 16. Iss. 2, pp. 259–266. https://doi.org/10.2478/cee-2020-0025
65. Логанина В.И., Фролов М.В. Использование зольных алюмосиликатных микросфер в известковых сухих строительных смесях для отделки. Вестник БГТУ им В.Г. Шухова. 2017. № 3. С. 6–8.
ttps://doi.org/10.12737/24623
65. Loganina V.I., Frolov M.V. The use of ash aluminosilicate microspheres in lime dry building mixtures for finishing. Vestnik BSTU named after V.G. Shukhov. 2017. No. 3, pp. 6–8. (In Russian). https://doi.org/10.12737/24623
66. Антоненко М.В., Огурцова Ю.Н., Строкова В.В., Губарева Е.Н. Фотокаталитически активные самоочищающиеся материалы на основе цемента. Составы, свойства, применение // Вестник БГТУ им. В.Г. Шухова. 2020. № 3. С. 16–25. https://doi.org/10.34031/2071-7318-2020-5-3-16-25
66. Antonenko M.V., Ogurtsova Yu.N., Strokova V.V., Gubareva E.N. Cement-based photocatalytically active self-cleaning materials. Compositions, properties, application. Vestnik BSTU named after V.G. Shukhov. 2020. No. 3, pp. 16–25. (In Russian). https://doi.org/10.34031/2071-7318-2020-5-3-16-25
67. Antonenko M.V., Ogurtsova Y.N., Strokova V.V., Gubareva E.N. The effect of titanium dioxide sol stabilizer on the properties of photocatalytic composite material. Lecture Notes in Civil Engineering. 2021. Vol. 95, pp. 16-22. https://doi.org/10.1007/978-3-030-54652-6_3
68. Gubareva E.N., Strokova V.V., Ogurtsova Y.N., Baskakov P.S., Singh L.P. Composition and properties of TiO2 sol to produce a photocatalytic composite material. Key Engineering Materials. 2020. Vol. 854, pp. 45-50. https://doi.org/10.4028/www.scientific.net/KEM.854.45
69. Strokova V., Gubareva E., Ogurtsova Y., Fediuk R., Zhao P., Vatin N., Vasilev Y. Obtaining and properties of a photocatalytic composite material of the “SiO2–TiO2” system based on various types of silica raw materials. Nanomaterials. 2021. Vol. 11(4), pp. 866. https://doi.org/10.3390/nano11040866
70. Senff L., Ascensão G., Ferreira V.M., Seabra M.P., Labrincha J.A. Development of multifunctional plaster using nano-TiO2 and distinct particle size cellulose fibers. Energy and Buildings. 2018. Vol. 158, pp. 721-735. https://doi.org/10.1016/j.enbuild.2017.10.060
71. Dantas S.R.A., Serafini R., Romano R.C. de O., Vittorino F., Loh K. Influence of the nano TiO2 dispersion procedure on fresh and hardened rendering mortar properties. Construction and Building Materials. 2019. Vol. 215, pp. 544–556. https://doi.org/10.1016/j.conbuildmat.2019.04.190
72. Diamanti M., Del Curto B., Ormellese M., Pedeferri M. Photocatalytic and self-cleaning activity of colored mortars containing TiO2. Construction and Building Materials. 2013. Vol. 46, pp. 167–174. https://doi.org/10.1016/j.conbuildmat.2013.04.038
73. Jiang C., Li D., Zhang P., Li J., Wang J., Yu J. Formaldehyde and volatile organic compound (VOC) emissions from particleboard: identification of odorous compounds and effects of heat treatment. Building and Environment. 2017. Vol. 117, pp. 118–126. https://doi.org/10.1016/j.buildenv.2017.03.004
74. Quiroz T.J., Royer S., Bellat J.P., Giraudon J.M., Lamonier J.F. Formaldehyde: catalytic oxidation as a promising soft way of elimination. Chemsuschem. 2013. Vol. 6, pp. 578–592. https://doi.org/10.1002/cssc.201200809
75. Shayegan Z., Haghighat F., Lee C.-S. Carbon-doped TiO2 film to enhance visible and UV light photocatalytic degradation of indoor environment volatile organic compounds. Journal of Environmental Chemical Engineering. 2020. Vol. 8. Iss. 5. 104162. https://doi.org/10.1016/j.jece.2020.104162
76. Hu X., Li C., Sun Z., Song J., Zheng S. Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light. Building and Environment. 2020. Vol. 168, 106481. https://doi.org/10.1016/j.buildenv.2019.106481
77. Balayevaa N., Fleischa M., Bahnemann D. Surface-grafted WO3/TiO2 photocatalysts: Enhanced visible-light activity towards indoor air purification. Catalysis Today. 2018. Vol. 313, pp. 63–71. https://doi.org/10.1016/j.cattod.2017.12.008
78. Франке Р. Легкие штукатурки компании «Quick-mix». Сухие строительные смеси. 2011. № 5. С. 20–22.
78. Franke R. Light plasters of the company "Quick-mix". Sukhiye stroitel'nyye smesi. 2011. No. 5, pp. 20–22. (In Russian).
79. Fořt J., Kočí J., Pokorný J., Černý R. Influence of superabsorbent polymers on moisture control in building interiorsInfluence of superabsorbent polymers on moisture control in building interiors. Energies. 2020. Vol. 13. Iss. 8. 2009. https://doi.org/10.3390/en13082009
80. Fořt J., Hotěk P., Kočí J., Cerný R. Utilization plasters with superabsorbent admixture to moderate moisture level in constructions. E3S Web of Conferences. 2020. Vol. 172. 11009. http://doi.org/10.1051/e3sconf/202017211009
81. Fořt J., Kočí J., Pokorný J., Podolka L., Kraus M., Černý R. Characterization of responsive plasters for passive moisture and temperature control. Applied Sciences (Switzerland). 2020. Vol. 10. Iss. 24, pp. 1–16. https://doi.org/10.3390/app10249116
82. Samková A., Kulhavý P., Pechočiaková M. Possibilities to improve electromagnetic shielding of plaster composites adding carbon fibers. IOP Conference Series: Materials Science and Engineering. 17th World Textile Conference: Shaping the Future of Textiles, AUTEX 2017. Corfu, Greece. 29–31 May 2017. Vol. 254. Iss. 4. 042025. https://doi.org/10.1088/1757-899x/254/4/042025
83. Samkova A., Kulhavy P. Study of the acoustic attenuation in plaster composites in dependency on added fiber reinforcement. Vibroengineering Procedia. 25th International Conference on Vibroengineering. Liberec, Czech Republic. 30 May–1 June 2017. Vol. 11, pр. 179–185. https://doi.org/10.21595/vp.2017.18567
84. Jerman M., Medveď I., Maděra J., Kočí V., Cerný R. Effect of moisture variations on damage cumulation in surface layers of building structures. AIP Conference Proceedings. International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017. Thessaloniki, Greece. 25–30 September 2017. Vol. 1978. 080005. https://doi.org/10.1063/1.5043730
85. Парута В.А., Брынзин Е.В., Гринфельд Г.И. Физико-механические основы проектирования штукатурных растворов для газобетонной кладки. Строительные материалы. 2015. № 8. С. 30–34. https://doi.org/10.31659/0585-430X-2015-728-8-30-34
85. Paruta V.A., Brynzin E.V., Grinfeld G.I. Physical and mechanical foundations for the design of plaster solutions for aerated concrete masonry. Stroitel’nye Materialy [Construction Materials]. 2015. No. 8, pp. 30–34. (In Russian).
86. Čáchová M., Koňáková D., Vejmelková E., Keppert M., Polozhiy K., Černý R. Heat and water vapor transport properties of selected commercially produced plasters. Advanced Materials Research 1st International Doctoral Conference on Advanced Materials, IDC-AM 2014. Zahradky, Czech Republic. 23-25 July 2014. Vol. 982, pр. 90–93. https://doi.org/10.4028/www.scientific.net/amr.982.90
87. Sathiparan N., Rupasinghe M.N., Pavithra H.M. Performance of coconut coir reinforced hydraulic cement mortar for surface plastering application. Construction and Building Materials. 2017. Iss. 142, pp. 23–30. http://dx.doi.org/10.1016/j.conbuildmat.2017.03.058
88. Stahl T., Vonbank R., Holzer M. Die Entwicklung eines mineralischen Feuchtespeicher-Grundputzes. Bauphysik. 2013. Vol. 35. Iss. 5, pp. 346–355. https://doi.org/10.1016/j.conbuildmat.2020.121385
89. Парута В.А. Теоретические основы проектирования составов штукатурных растворов для автоклавного газобетона с учетом механики разрушения системы «кладка – покрытие». Сухие строительные смеси. 2014. № 5. С. 38–43.
89. Paruta V.A. Theoretical basis of design of plaster solutions compositions for autoclave aerated concrete taking into account the mechanics of destruction of the masonry-coating system. Sukhie stroitel'nye smesi. 2014. No. 5, pp. 38–43. (In Russian).

Для цитирования: Строкова В.В., Сивальнева М.Н., Неровная С.В., Второв Б.Б. Штукатурные покрытия как регулятор параметров микроклимата в помещении: обзор теоретических и экспериментальных исследований // Строительные материалы. 2021. № 7. С. 32–72. DOI: https://doi.org/10.31659/0585-430X-2021-793-7-32-72


Печать   E-mail