АннотацияОб авторахСписок литературы
Газовая среда предприятий нефтехимии и нефтепереработки является агрессивной по отношению к бетону и железобетону. Одним из самых распространенных газов при этом является диоксид углерода повышенной концентрации, способный карбонизировать цементные материалы и изделия. Безремонтный период эксплуатации строительных конструкций из этих материалов не превышает 5–10 лет при нормируемом сроке не менее 25 лет. В работе рассматриваются особенности деструктивных процессов, протекающих при карбонизации, и описываются характерные повреждения на примере технологической этажерки, расположенной на территории нефтеперерабатывающего завода в г. Уфа. Анализ эксплуатационной среды поблизости данного завода показал, что концентрация углекислого газа может достигать в летний период 500–550 ppm, без учета пиковых выбросов. С целью оценки скорости карбонизации ремонтных составов проведены ускоренные испытания в условиях высокой концентрации углекислого газа. Уточнен механизм карбонизации ремонтных составов, скорость которых описывается законом «корня n-й степени от времени» с показателем n от 2,3 до 4,3. При действии статических и динамических нагрузок наиболее рационально применение ремонтных составов тиксотропного действия с наличием дисперсного армирования (фибры), которые дополнительно повышают трещиностойкость конструкции.
П.А. ФЕДОРОВ1, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
Е.В. ЛУЦЫК1, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
Т.В. ЛАТЫПОВА1, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
В.М. ЛАТЫПОВ1, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
А.Р. АНВАРОВ1, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.);
В.П. ПОПОВ2, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
Н.Г. ЧУМАЧЕНКО2, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)
Е.В. ЛУЦЫК1, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
Т.В. ЛАТЫПОВА1, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
В.М. ЛАТЫПОВ1, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
А.Р. АНВАРОВ1, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.);
В.П. ПОПОВ2, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
Н.Г. ЧУМАЧЕНКО2, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)
1 Уфимский государственный нефтяной технический университет (450062, г. Уфа, ул. Космонавтов, 1)
2 Самарский государственный технический университет (443100, г. Самара, ул. Молодогвардейская, 244)
1. Алексеев С.Н., Розенталь Н.К. Коррозионная стойкость железобетонных конструкций в агрессивной промышленной среде. М.: Стройиздат, 1976. 205 с.
1. Alekseev S.N., Rozental’ N.K. Korrozionnaya stoikost’ zhelezobetonnykh konstruktsii v agressivnoi promyshlennoi srede [Corrosion resistance of reinforced concrete structures in an aggressive industrial environment]. Moscow: Stroyizdat. 1976. 205 p.
2. Полак А.Ф. Моделирование коррозии железобетона и прогнозирование его долговечности // Итоги науки и техники. Коррозия и защита от коррозии. 1986. Т. XI. C. 136–180.
2. Polak A.F. Reinforced concrete corrosion modeling and prediction of its durability. Results of Science and Technology. Corrosion and corrosion protection. 1986. Vol. XI, pp. 136–180. (In Russian).
3. Латыпов В.М., Латыпова Т.В., Луцык Е.В., Федоров П.А. Долговечность бетона и железобетона в природных агрессивных средах. Уфа: РИЦ УГНТУ, 2014. 288 с.
3. Latypov V.M., Latypova T.V., Lutsyk E.V., Fedorov P.A. Dolgovechnost’ betona i zhelezobetona v prirodnykh agressivnykh sredakh [Durability of concrete and reinforced concrete in aggressive natural environments]. Ufa: RIC UGNTU. 2014. 288 p.
4. Speight J.G. Petroleum refining and environmental control and environmental effects. Fossil Energy: selected entries from the encyclopedia of sustainability science and technology. New York. 2013, pp. 61–97. DOI: https://doi.org/10.1007/978-1-4419-0851-3
5. Brooks S.B., Crawford T.L., Oechel W.C. Measurement of carbon dioxide emissions plumes from prudhoe bay, alaska oil fields. Journal of Atmospheric Chemistry. 1997. Vol. 27. No. 2, pp. 197–207. DOI: https://doi.org/10.1023/A:1005890318796
6. Carotenuto F., Gualtieri G., Miglietta F., Riccio A., Toscano P., Wohlfahrt G., Gioli B. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling. Environmental Monitoring and Assessment. 2018. Vol. 190. No. 3. pp. 165. DOI: https://doi.org/10.1023/A:1005890318796
7. Reuter M., Bovensmann H., Buchwitz M., Borchardt J., Krautwurst S., Gerilowski K., Lindauer M., Kubistin D., Burrows J.P. Development of a small unmanned aircraft system to derive CO2 emissions of anthropogenic point sources. Atmospheric Measurement Techniques. 2021. Vol. 14. No. 1, pp. 153–172. DOI: https://doi.org/10.5194/amt-14-153-2021
8. Possan E., Thomaz W.A., Aleandri G.A., Felix E.F., Santos A.C.P. dos CO2 uptake potential due to concrete carbonation: A case study. Case Studies in Construction Materials. 2017. Vol. 6, pp. 147–161. DOI: https://doi.org/10.1016/j.cscm.2017.01.007
9. Лагерблад Б. Механизм карбонизации // Цемент и его применение. 2014. № 1. C. 177–181.
9. Lagerblad B. Mechanism of carbonation. Tsement i ego primenenie. 2014. No. 1, pp. 177–181. (In Russian)
10. Ashraf W. Carbonation of cement-based materials: Challenges and opportunities. Construction and Building Materials. 2016. Vol. 120, pp. 558–570. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.080
11. Silva R.V., Neves R., Brito J. de, Dhir R.K. Carbonation behaviour of recycled aggregate concrete. Cement and Concrete Composites. 2015. Vol. 62, pp. 22–32. DOI: https://doi.org/10.1016/j.cemconcomp.2015.04.017
12. Hunkeler F. Corrosion in reinforced concrete: processes and mechanisms. Corrosion in Reinforced Concrete Structures. 2005, pp. 1–45. DOI: https://doi.org/10.1533/9781845690434.1
13. Полак А.Ф., Гельфман Г.Н., Яковлев В.В. Антикоррозионная защита строительных конструкций на химических и нефтехимических предприятиях. Уфа: Башкирское книжное издательство, 1980. 80 с.
13. Polak A.F., Gel’fman G.N., Yakovlev V.V. Antikorrozionnaya zashchita stroitel’nykh konstruktsii na khimicheskikh i neftekhimicheskikh predpriyatiyakh [Corrosion protection of building structures in chemical and petrochemical plants]. Ufa: Bashkir Book Publishing House. 1980. 80 p.
14. Новгородский В.И. Основы долговечности железобетонных конструкций. М.: Издательство «Спутник+», 2015. 362 с.
14. Novgorodskii V.I. Osnovy dolgovechnosti zhelezobetonnykh konstruktsii [Fundamentals of the durability of reinforced concrete structures]. Moscow: Publishing house «Sputnik +». 2015. 362 p.
15. Гильмутдинов Т.З., Федоров П.А. Влияние трещин на кинетику карбонизации бетона // Строительные материалы. 2016. № 10. C. 63–66.
15. Gil’mutdinov T.Z., Fedorov P.A. Influence of cracks on the kinetics of concrete carbonization. Stroitel’nye Materialy [Construction Materials]. 2016. No. 10, pp. 63–66. (In Russian).
16. Tuutti K. Corrosion of steel in concrete. Stockholm: Swedish Cement and Concrete Research Institute. 1982. 472 p.
17. Helland S. Design for service life: Implementation of FIB Model Code 2010 rules in the operational code ISO 16204. Structural Concrete. 2013. Vol. 14. No. 1, pp. 10–18. DOI: https://doi.org/10.1002/suco.201200021
18. Гусев В.В., Файвусович А.С., Степанова В.Ф., Розенталь Н.К. Математические модели процессов коррозии бетона. М.: Информационно-издательский центр «ТИМР», 1996. 104 с.
18. Gusev V.V., Faivusovich A.S., Stepanova V.F., Rozental’ N.K. Matematicheskie modeli protsessov korrozii betona [Mathematical models of concrete corrosion processes]. Moscow: Information and Publishing Center «TIMR». 1996. 104 p.
19. Schissel P., Gehlen C., Kapteina G. Assessment and service life updating of existing tunnels. Proceedings of the Hazards in tunnels, Structural Integrity» presented at the1st International Symposium “Safe & Reliable Tunnels, Innovative European Achievements”. Prague, Czech Republic. 2004, pp. 189–198.
20. Шалый Е.Е., Леонович С.Н., Ким Л.В. Деградация железобетонных конструкций морских сооружений от совместного воздействия карбонизации и хлоридной агрессии // Строительные материалы. 2019. № 5. C. 67–72. DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
20. Shalyi E.E., Leonovich S.N., Kim L.V. Degradation of reinforced concrete structures of marine works from the combined impact of carbonation and chloride aggression. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
21. Papadakis V.G. Estimation of concrete service life–the theoretical background. Patras, Greece: Patras Science Park SA. 2005. 130 p.
22. Розенталь Н.К. Коррозионная стойкость цементных бетонов низкой и особо низкой проницаемости. М.: ФГУП ЦПП, 2006. 520 с.
22. Rozental’ N.K. Korrozionnaya stoikost’ tsementnykh betonov nizkoi i osobo nizkoi pronitsaemosti [Corrosion resistance of low and very low permeability cement concretes]. Moscow: FGUP TsPP. 2006. 520 p.
23. Parrott P.J. Design for avoiding damage due to carbonation-induced corrosion. ACI SP-145 International Conference Durability of Concrete. Detroit. 1994, pp. 283–298.
24. Анваров А.Р., Латыпова Т.В., Латыпов В.М. Обеспечение долговечности железобетона в обычных условиях эксплуатации // ALITinform: Цемент. Бетон. Сухие смеси. 2008. № 2. C. 52–57.
24. Anvarov A.R., Latypova T.V., Latypov V.M. Ensuring the durability of reinforced concrete under normal operating conditions. ALITinform: Tsement. Beton. Sukhie smesi. 2008. No. 2, pp. 52–57. (In Russian).
25. Fedorov P.A., Anvarov A.R., Lutsyk E.V., Latypov V.M., Latypova T.V. Kinetics of fine concrete carbonation in humid operational environment. International Journal of Applied Engineering Research. 2016. Vol. 11. No. 11, pp. 7439–7445.
26. Jiang L., Lin B., Cai Y. A model for predicting carbonation of high-volume fly ash concrete. Cement and Concrete Research. 2000. Vol. 30, pp. 699–702. DOI: https://doi.org/10.1016/S0008-8846(00)00227-1
27. Carević V., Ignjatović I., DragašJ. Model for practical carbonation depth prediction for high volume fly ash concrete and recycled aggregate concrete. Construction and Building Materials. 2019. Vol. 213, pp. 194–208. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.267
28. Федоров П.А., Абдуллин М.М., Абдуллин В.М., Нигматуллин Э.И. Вероятность безотказной работы надводной части нефтедобывающих железобетонных морских стационарных платформ гравитационного типа // Нефтегазовое дело. 2019. Т. 17. № 2. C. 111–120. DOI: https://doi.org/10.17122/ngdelo-2019-2-111-120
28. Fedorov P.A., Abdullin M.M., Abdullin V.M., Nigmatullin E.I. Probability of failure-free operation of the above-water part of oil-producing reinforced concrete offshore fixed platforms of gravity type. Neftegazovoe delo. 2019. Vol. 17. No. 2, pp. 111–120. DOI: https://doi.org/10.17122/ngdelo-2019-2-111-120 (In Russian).
1. Alekseev S.N., Rozental’ N.K. Korrozionnaya stoikost’ zhelezobetonnykh konstruktsii v agressivnoi promyshlennoi srede [Corrosion resistance of reinforced concrete structures in an aggressive industrial environment]. Moscow: Stroyizdat. 1976. 205 p.
2. Полак А.Ф. Моделирование коррозии железобетона и прогнозирование его долговечности // Итоги науки и техники. Коррозия и защита от коррозии. 1986. Т. XI. C. 136–180.
2. Polak A.F. Reinforced concrete corrosion modeling and prediction of its durability. Results of Science and Technology. Corrosion and corrosion protection. 1986. Vol. XI, pp. 136–180. (In Russian).
3. Латыпов В.М., Латыпова Т.В., Луцык Е.В., Федоров П.А. Долговечность бетона и железобетона в природных агрессивных средах. Уфа: РИЦ УГНТУ, 2014. 288 с.
3. Latypov V.M., Latypova T.V., Lutsyk E.V., Fedorov P.A. Dolgovechnost’ betona i zhelezobetona v prirodnykh agressivnykh sredakh [Durability of concrete and reinforced concrete in aggressive natural environments]. Ufa: RIC UGNTU. 2014. 288 p.
4. Speight J.G. Petroleum refining and environmental control and environmental effects. Fossil Energy: selected entries from the encyclopedia of sustainability science and technology. New York. 2013, pp. 61–97. DOI: https://doi.org/10.1007/978-1-4419-0851-3
5. Brooks S.B., Crawford T.L., Oechel W.C. Measurement of carbon dioxide emissions plumes from prudhoe bay, alaska oil fields. Journal of Atmospheric Chemistry. 1997. Vol. 27. No. 2, pp. 197–207. DOI: https://doi.org/10.1023/A:1005890318796
6. Carotenuto F., Gualtieri G., Miglietta F., Riccio A., Toscano P., Wohlfahrt G., Gioli B. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling. Environmental Monitoring and Assessment. 2018. Vol. 190. No. 3. pp. 165. DOI: https://doi.org/10.1023/A:1005890318796
7. Reuter M., Bovensmann H., Buchwitz M., Borchardt J., Krautwurst S., Gerilowski K., Lindauer M., Kubistin D., Burrows J.P. Development of a small unmanned aircraft system to derive CO2 emissions of anthropogenic point sources. Atmospheric Measurement Techniques. 2021. Vol. 14. No. 1, pp. 153–172. DOI: https://doi.org/10.5194/amt-14-153-2021
8. Possan E., Thomaz W.A., Aleandri G.A., Felix E.F., Santos A.C.P. dos CO2 uptake potential due to concrete carbonation: A case study. Case Studies in Construction Materials. 2017. Vol. 6, pp. 147–161. DOI: https://doi.org/10.1016/j.cscm.2017.01.007
9. Лагерблад Б. Механизм карбонизации // Цемент и его применение. 2014. № 1. C. 177–181.
9. Lagerblad B. Mechanism of carbonation. Tsement i ego primenenie. 2014. No. 1, pp. 177–181. (In Russian)
10. Ashraf W. Carbonation of cement-based materials: Challenges and opportunities. Construction and Building Materials. 2016. Vol. 120, pp. 558–570. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.080
11. Silva R.V., Neves R., Brito J. de, Dhir R.K. Carbonation behaviour of recycled aggregate concrete. Cement and Concrete Composites. 2015. Vol. 62, pp. 22–32. DOI: https://doi.org/10.1016/j.cemconcomp.2015.04.017
12. Hunkeler F. Corrosion in reinforced concrete: processes and mechanisms. Corrosion in Reinforced Concrete Structures. 2005, pp. 1–45. DOI: https://doi.org/10.1533/9781845690434.1
13. Полак А.Ф., Гельфман Г.Н., Яковлев В.В. Антикоррозионная защита строительных конструкций на химических и нефтехимических предприятиях. Уфа: Башкирское книжное издательство, 1980. 80 с.
13. Polak A.F., Gel’fman G.N., Yakovlev V.V. Antikorrozionnaya zashchita stroitel’nykh konstruktsii na khimicheskikh i neftekhimicheskikh predpriyatiyakh [Corrosion protection of building structures in chemical and petrochemical plants]. Ufa: Bashkir Book Publishing House. 1980. 80 p.
14. Новгородский В.И. Основы долговечности железобетонных конструкций. М.: Издательство «Спутник+», 2015. 362 с.
14. Novgorodskii V.I. Osnovy dolgovechnosti zhelezobetonnykh konstruktsii [Fundamentals of the durability of reinforced concrete structures]. Moscow: Publishing house «Sputnik +». 2015. 362 p.
15. Гильмутдинов Т.З., Федоров П.А. Влияние трещин на кинетику карбонизации бетона // Строительные материалы. 2016. № 10. C. 63–66.
15. Gil’mutdinov T.Z., Fedorov P.A. Influence of cracks on the kinetics of concrete carbonization. Stroitel’nye Materialy [Construction Materials]. 2016. No. 10, pp. 63–66. (In Russian).
16. Tuutti K. Corrosion of steel in concrete. Stockholm: Swedish Cement and Concrete Research Institute. 1982. 472 p.
17. Helland S. Design for service life: Implementation of FIB Model Code 2010 rules in the operational code ISO 16204. Structural Concrete. 2013. Vol. 14. No. 1, pp. 10–18. DOI: https://doi.org/10.1002/suco.201200021
18. Гусев В.В., Файвусович А.С., Степанова В.Ф., Розенталь Н.К. Математические модели процессов коррозии бетона. М.: Информационно-издательский центр «ТИМР», 1996. 104 с.
18. Gusev V.V., Faivusovich A.S., Stepanova V.F., Rozental’ N.K. Matematicheskie modeli protsessov korrozii betona [Mathematical models of concrete corrosion processes]. Moscow: Information and Publishing Center «TIMR». 1996. 104 p.
19. Schissel P., Gehlen C., Kapteina G. Assessment and service life updating of existing tunnels. Proceedings of the Hazards in tunnels, Structural Integrity» presented at the1st International Symposium “Safe & Reliable Tunnels, Innovative European Achievements”. Prague, Czech Republic. 2004, pp. 189–198.
20. Шалый Е.Е., Леонович С.Н., Ким Л.В. Деградация железобетонных конструкций морских сооружений от совместного воздействия карбонизации и хлоридной агрессии // Строительные материалы. 2019. № 5. C. 67–72. DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
20. Shalyi E.E., Leonovich S.N., Kim L.V. Degradation of reinforced concrete structures of marine works from the combined impact of carbonation and chloride aggression. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-67-72
21. Papadakis V.G. Estimation of concrete service life–the theoretical background. Patras, Greece: Patras Science Park SA. 2005. 130 p.
22. Розенталь Н.К. Коррозионная стойкость цементных бетонов низкой и особо низкой проницаемости. М.: ФГУП ЦПП, 2006. 520 с.
22. Rozental’ N.K. Korrozionnaya stoikost’ tsementnykh betonov nizkoi i osobo nizkoi pronitsaemosti [Corrosion resistance of low and very low permeability cement concretes]. Moscow: FGUP TsPP. 2006. 520 p.
23. Parrott P.J. Design for avoiding damage due to carbonation-induced corrosion. ACI SP-145 International Conference Durability of Concrete. Detroit. 1994, pp. 283–298.
24. Анваров А.Р., Латыпова Т.В., Латыпов В.М. Обеспечение долговечности железобетона в обычных условиях эксплуатации // ALITinform: Цемент. Бетон. Сухие смеси. 2008. № 2. C. 52–57.
24. Anvarov A.R., Latypova T.V., Latypov V.M. Ensuring the durability of reinforced concrete under normal operating conditions. ALITinform: Tsement. Beton. Sukhie smesi. 2008. No. 2, pp. 52–57. (In Russian).
25. Fedorov P.A., Anvarov A.R., Lutsyk E.V., Latypov V.M., Latypova T.V. Kinetics of fine concrete carbonation in humid operational environment. International Journal of Applied Engineering Research. 2016. Vol. 11. No. 11, pp. 7439–7445.
26. Jiang L., Lin B., Cai Y. A model for predicting carbonation of high-volume fly ash concrete. Cement and Concrete Research. 2000. Vol. 30, pp. 699–702. DOI: https://doi.org/10.1016/S0008-8846(00)00227-1
27. Carević V., Ignjatović I., DragašJ. Model for practical carbonation depth prediction for high volume fly ash concrete and recycled aggregate concrete. Construction and Building Materials. 2019. Vol. 213, pp. 194–208. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.267
28. Федоров П.А., Абдуллин М.М., Абдуллин В.М., Нигматуллин Э.И. Вероятность безотказной работы надводной части нефтедобывающих железобетонных морских стационарных платформ гравитационного типа // Нефтегазовое дело. 2019. Т. 17. № 2. C. 111–120. DOI: https://doi.org/10.17122/ngdelo-2019-2-111-120
28. Fedorov P.A., Abdullin M.M., Abdullin V.M., Nigmatullin E.I. Probability of failure-free operation of the above-water part of oil-producing reinforced concrete offshore fixed platforms of gravity type. Neftegazovoe delo. 2019. Vol. 17. No. 2, pp. 111–120. DOI: https://doi.org/10.17122/ngdelo-2019-2-111-120 (In Russian).
Для цитирования: Федоров П.А., Луцык Е.В., Латыпова Т.В., Латыпов В.М., Анваров А.Р., Попов В.П., Чумаченко Н.Г. Долговечность бетона в газовой среде предприятий нефтехимии и нефтепереработки // Строительные материалы. 2021. № 11. С. 16–22. DOI: https://doi.org/10.31659/0585-430X-2021-797-11-16-22