А.И. РОДИН3, канд. техн. наук, доцент (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.);
С.Н. КАРПУШИН2, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.);
С.В. САМЧЕНКО1, д-р техн. наук, профессор (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.);
О.Б. ТОМИЛИН3, канд. хим. наук, доцент (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.);
С.С. ГЛАДКИН2, инженер (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.);
И.В. ЕРОФЕЕВА1, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.);
Я.А. САНЯГИНА2, инженер (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)
1 Национальный исследовательский Московский государственный строительный университет (129337, г. Москва, Ярославское ш., 26)
2 Научно-исследовательский институт строительной физики РААСН, (127238, г. Москва, Локомотивный пр., 21)
3 Национальный исследовательский Мордовский государственный университет им. Н.П. Огарева, (430005, Республика Мордовия, г. Саранск, ул. Большевистская, 68)
2. Erofeev V., Vatin N., Maximova I., Tarakanov O., Sanyagina Y., Erofeeva I., Suzdaltsev O. Powder-activated concrete with a granular surface texture. International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18. No. 4, pp. 49–61.EDN: HODYXP. https://doi.org/10.22337/2587-9618-2022-18-4-49-61
3. Burg R.G., Ost B.W. Engineering Properties of commercially аvailable High-Strength concretes. Pottland cement Associacion. Bulletin RDID 4TSNI.914.1992, pp. 56–57.
4. Ерофеев В.Т., Родин А.И., Якунин В.В., Тувин М.Н. Структура, состав и свойства геополимеров из отходов минеральной ваты // Инженерно-строительный журнал. 2019. № 6 (90). С. 3–14. EDN: XBXALK
https://doi.org/10.18720/MCE.90.1
4. Erofeev V.T., Rodin A.I., Yakunin V.V., Tuvin M.N. Structure, composition and properties of geopolymers from mineral wool waste. Magazine of Civil Engineering. 2019. No. 6 (90), pp. 3–14. (In Russian). EDN: XBXALK. https://doi.org/10.18720/MCE.90.1
5. Buil M., Paillere A.M., Roussel B. High strength mortars containing condensed silica fume. Cement and concrete research. 1984. Vol. 14. No. 5, pp. 639–704.
6. Aitcin P-C., Lachemi M., Adeline R., Richard P. The Sherbooke Reactive Powder Concrete Footbridge. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE). 1998. Vol. 8. Iss. 2, pp. 140–144. https://doi.org/10.2749/101686698780489243
7. Muller C., Sahroder P., Shlissl P. Hochleistungbetonmit Stlinkohlenflugasche. Essen VGB Fechmische Vereinigung Bundesverband Kraftwerksnelenprodukte. Flugasche in Beton. 1998. Vortag 4. 25 p.
8. Wei S., Jiang Z., Liu H., Zhou D., Sanchez-Silva M. Microbiologically induced deterioration of concrete. A review. Brazilian Journal of Microbiology. 2013. Vol. 44 (4), pp. 1001–1007.
https://doi.org/10.1590/S1517-83822014005000006
9. Moradian M., Shekarchi M., Pargar F., Bonakdar A., Valipour M. Deterioration of concrete caused by complex attack in sewage treatment plant environment. Journal of Performance of Constructed Facilities. 2012. Vol. 26. No. 1, pp. 124–134.
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000189
10. Erbektas A.R., Isgor O.B., Weiss W.J. An accelerated testing protocol for assessing microbially induced concrete deterioration during the bacterial attachment phase. Cement and Concrete Composites. 2019. Vol. 104, Art. 103339. https://doi.org/10.1016/j.cemconcomp.2019.103339
11. Dyer T. Biodeterioration of concrete. Boca Raton: CRC Press. 2017. 210 p. https://doi.org/10.1201/9781315119557
12. Erofeev V.T., Smirnov V.F., Dergunova A.V., Bogatov A.D., Letkina N.V. Development and Research of Methods to Improve the Biosistability of Building Materials. Materials Science Forum. 2019. Vol. 974, pp. 305–311. EDN: WDGNMC. https://doi.org/10.4028/www.scientific.net/MSF.974.305
13. Erofeev V., Myshkin A., Smirnov V. The study of polyester-acrylate composite’s stability in the humid maritime operating conditions. Materials Today: Proceedings. 2019. Vol. 19. Part 5, pp. 2255–2257. https://doi.org/10.1016/j.matpr.2019.07.547
14. Erofeev V. Frame construction composites for buildings and structures in aggressive environments. Procedia Engineering. 2016. Vol. 165, pp. 1444–1447. EDN: YUXOWB. https://doi.org/10.1016/j.proeng.2016.11.877
15. Stanić N., De Haan C., Tirion M., Langeveld J.G., Clemens F.H.L.R. Comparison of core sampling and visual inspection for assessment of concrete sewer pipe condition. Water Science and Technology. 2013. Vol. 67. Iss. 11, pp. 2458–2466.
https://doi.org/10.2166/wst.2013.138
16. Sanches Junior F., Venturini W.S. Damage modelling of reinforced concrete beams. Advances in Engineering Software. 2007. Vol. 38. Iss. 8–9, pp. 538–546.
https://doi.org/10.1016/j.advengsoft.2006.08.025
17. Dergunova A., Piksaykina A., Bogatov A., Salman A.D.S.D., Erofeev V. The economic damage from biodeterioration in building sector. IOP Conference Series: Materials Science and Engineering. International Scientific Conference «Construction and Architecture: Theory and Practice of Innovative Development» – Construction of Roads, Bridges, Tunnels and Airfields. 2019. Vol. 698. Iss. 7, p. 077020. EDN: TMKPRD. https://doi.org/10.1088/1757-899X/698/7/077020
18. Zeng X., Li Y., Ran Y., Yang K., Qu F., Wang P. Deterioration mechanism of CA mortar due to simulated acid rain. Construction and Building Materials. 2018. Vol. 168, pp. 1008–1015.
https://doi.org/10.1016/j.conbuildmat.2018.03.033
19. Brown G.D., Denning D.W., Gow N.A.R., Levitz S.M., Netea M.G., White T.C. Hidden killers: Human fungal infections. Science Translational Medicine. 2012. Vol. 4. No. 165, p.165rv13.
https://doi.org/10.1126/scitranslmed.3004404
20. Latgé J.-P. Aspergillus fumigatus and Aspergillosis. Clinical Microbiology Reviews. 1999. Vol. 12. No. 2, pp. 310–350. https://doi.org/10.1128/cmr.12.2.310
21. Person A.K., Kontoyiannis D.P., Alexander B.D. Fungal Infections in Transplant and Oncology Patients. Hematology/Oncology Clinics of North America. 2011. Vol. 25. Iss. 1, pp. 193–213.
https://doi.org/10.1016/j.idc.2010.01.002
22. Travush V.I., Karpenko N.I., Erofeev V.T., Rodin A.I., Rodina N.G., Smirnov V.F. Development of biocidal cements for buildings and structures with biologically active environmen. Power Technology and Engineering. 2017. Vol. 51, pp. 377–384.
https://doi.org/10.1007/s10749-017-0842-8
23. Erofeev V., Rodin A., Rodina N., Kalashnikov V., Erofeeva I. Biocidal Binders for the Concretes of Unerground Constructions. 15TH Internetional Sientific Conference «Undergrjund Urbanisation as a Prerequisite for Sustainable Development». Procedia Engineering. 2016. Vol. 165, pp. 1448–1454. EDN: YUWOXB. https://doi.org/10.1016/j.proeng.2016.11.878
24. Smoláková M., Eštoková A., Václavík V. Antifungal efficiency of slag based cement composites. International Multidisciplinary Scientific Geoconference Surveying Geology and Mining Ecology Management. 2018. Vol. 18 (6.3), pp. 27–34. EDN: LMCCYE. https://doi.org/10.5593/sgem2018/6.3/S26.004
25. Bertron A. Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Materials and Structures. 2014. Vol. 47. No. 11, pp. 1787–1806. EDN: YFBAAJ. https://doi.org/10.1617/s11527-014-0433-1
26. Liu Y., Wang J., Peng Z., Xiong Z., Zeng Y., Fu X., Zhang R., Hu S., Liu H., Liu Q. Advanced coal fly ash modification by using corrosive microorganisms as alternative filler-reinforcing fluororubbers. Materials Letters. 2019. Vol. 246, pp. 32–35. https://doi.org/10.1016/j.matlet.2019.03.036
27. Liu W., Tan H., Ni C., Chen Z., Luo T., Yu L. Effect of silica fume and fly ash on compressive strength and weight loss of high strength concrete material in sulfuric and acetic acid attack. Key Engineering Materials. 2017. Vol. 748, pp. 301–310. EDN: YGSKIY. https://doi.org/10.4028/www.scientific.net/KEM.748.301
28. Strigác J., Martauz P. Fungistatic properties of granulated blastfurnace slag and related slag-containing cements. Ceramics – Silikaty. 2016. Vol. 60 (1), pp. 19–26. https://doi.org/10.13168/cs.2016.0003
29. ŽivicaV., Krizma M. Acidic-resistant slag cement. Magazine of Concrete Research. 2013. Vol. 65. Iss. 18, pp. 1073–1080.
https://doi.org/10.1680/macr.12.00019
30. Senhadji Y., Escadeillas G., Mouli M., Khelafi H., Benosman. Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technology. 2014. Vol. 254, pp. 314–323.
https://doi.org/10.1016/j.powtec.2014.01.046
31. Gruyaert E., Van Den Heede P., Maes M., De Belie N. Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cement and Concrete Research. 2012. Vol. 42. Iss. 1, pp. 173–185. https://doi.org/10.1016/j.cemconres.2011.09.009
32. Siad H., Mesbah H.A., Bernard S.K., Khelafi H., Mouli M. Influence Of Natural Pozzolan On The Behavior Of Self-Compacting Concrete Under Sulphuric And Hydrochloric Acid Attacks. Comparative Study. Arabian Journal for Science and Engineering. 2010. Vol. 35 (1), pp. 183–195.
33. Parande A.K., Babu B.R., Pandi K., Karthikeyan M.S., Palaniswamy N. Environmental effects on concrete using Ordinary and Pozzolana Portland cement.Construction and Building Materials. 2011. Vol. 25. Iss. 1, pp. 288–297. https://doi.org/10.1016/j.conbuildmat.2010.06.027
34. Olivia M., Pradana T., Sitompul I.R. Properties of Plain and Blended Cement Concrete Immersed in Acidic Peat Water Canal. Procedia Engineering. 2017. Vol. 171, pp. 557–563. https://doi.org/10.1016/j.proeng.2017.01.372
Для цитирования: Ерофеев В.Т., Родин А.И., Карпушин С.Н., Самченко С.В., Томилин О.Б., Гладкин С.С., Ерофеева И.В., Санягина Я.А. Биоцидные цементы с активной минеральной добавкой: получение и свойства // Строительные материалы. 2024. № 12. С. 4–18. https://doi.org/10.31659/0585-430X-2024-831-12-4-18