Разработка принципов создания армированных композитов для строительных 3D-аддитивных технологий

Журнал: №12-2022
Авторы:

Славчева Г.С.,
Артамонова О.В.

DOI: https://doi.org/10.31659/0585-430X-2022-809-12-52-58
УДК: 678

 

АннотацияОб авторахСписок литературы
Обсуждаются теоретические принципы создания нового класса строительных материалов – армированных цементных композитов, полученных по экструзионной технологии 3D-печати. Особенность армированных конструкционных композитов для строительной 3D-печати будет состоять в том, что жесткая алюмосиликатная (на основе цемента и наполнителей различного состава и дисперсности) матрица в процессе печати будет армироваться волокнами с высокой прочностью при растяжении. Определены теоретические подходы к формированию структуры и свойств армокомпозитов, основанные на регулировании состава, вязкопластических свойств смеси и физико-механических свойств матрицы после ее затвердевания; свойств армирующих волокон; параметров сцепления «алюмосиликатная (цементная) матрица – армирующее волокно» в элементарной ячейке композита. Обоснованы геометрические, физико-механические и физико-химические средства регулирования выделенных групп факторов и технологические условия их реализации. Формирование заданного комплекса физико-механических свойств планируется обеспечить за счет рационального сочетания в структуре композита вещественного состава и геометрии слоя матрицы; вида, диаметра, количества, расположения армирующих волокон в объеме композита; создания прочного адгезионного соединения матрица–волокно.
Г.С. СЛАВЧЕВА, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
О.В. АРТАМОНОВА, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)

Воронежский государственный технический университет (394006, г. Воронеж, ул. 20-летия Октября, 84)

1. Bos F., Wolfs R., Ahmed Zand Salet T. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping. 2016. No. 11 (3), pp. 209–225. dx.doi.org/10.1080/17452759.2016.1209867
2. Toutou Z., Roussel N., Lanos C. The squeezing test: A tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research. 2005. No. 35 (10), pp. 1891–1899. dx.doi.org/10.1016/j.cemconres.2004.09.007
3. Perrot A., Rangeard D., Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Materials and Structures. 2016. No. 49, pp. 1213–1220. dx.doi.org/10.1617/s11527-015-0571-0
4. Perrot A., Rangeard D., Mélinge Y., Estellé P., Lanos C. Extrusion criterion for firm cement-based materials. Applied Rheology. 2009. No. 19, pp. 111–127. dx.doi.org/10.3933/ApplRheol-19-53042
5. Perrot A., Mélinge Y., Rangeard D., Micaelli F., Estellé P., Lanos C., Estellé P. Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheologica Acta. Springer Verlag. 2012. No. 51(8), pp. 743–754.
6. Ma S., Qian Y., Kawashima S. Experimental and modeling study on the non-linear structural build-up of fresh cement pastes incorporating viscosity modifying admixtures. Cement and Concrete Research. 2018. No. 108, pp. 1–9. dx.doi.org/10.1016/j.cemconres.2018.02.022
7. Perrot A., Pierre A., Nerella V.N., Wolfs R.J.M., Keita E., Nair S.A.O., Neithalath N., Roussel N., Mechtcherine V.. From analytical methods to numerical simulations: A process engineering toolbox for 3D concrete printing. Cement and Concrete Composites. 2021. No. 122. 104164. https://doi.org/10.1016/j.cemconcomp.2021.104164
8. Feng P., Menga X., Chenb J., Yea L. Mechanical properties of structures 3D printed with cementitious powders. Construction and Building Materials. 2015. No. 93, pp. 486–497. dx.doi.org/10.1016/j.conbuildmat.2015.05.132
9. Shakor P., Sanjayan J., Nazari A., Nejadi S. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Construction and Building Materials. 2017. No. 138, pp. 398–409. dx.doi.org/10.1016/j.conbuildmat.2017.02.037
10. Tay Y.W., Panda B, Chandra S. Paul S.C., Ming Jen Tan M.J., Qian S. Leong K.F., Chua C.K. Processing and properties of construction materials for 3D printing. Materials Science Forum. 2016. Vol. 861, pp. 177–181. dx.doi.org/10.4028/www.scientific.net/MSF.861.177
11. Paul S.C., Tay Y.W.D., Panda B., Tan M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering. 2018. No. 18 (1), pp. 311–319. dx.doi.org/j.acme.2017.02.008
12. Ngo T.D. Kashani A., Imbalzano G., Nguyen K., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. Vol. 143. 103 p. dx.doi.org/10.1016/j.compositesb.2018.02.012
13. Lin J.C., Wu X., Yang W., et al. Application of P.O and R-SAC mortar for 3D printing in construction. IOP Conference Series: Materials Science and Engineering. 2017. Vol. 292. No. 1, pp. 1–7. dx.doi.org/10.1088/1757-899X/292/1/012070
14. Malaeb Z., Hachem H., Tourbah A., et al. 3D Concrete Printing: machine and mix design. International Journal of Civil Engineering and Technology. 2015. Vol. 6 (4), pp. 14–22.
15. Poluektova V.A., Shapovalov N.A. Concrete chemicalization for digital printing: control of rheology and structure formation. Lecture Notes in Civil Engineering. 2021. No. 95, pp. 59–65.
16. Perrot A., Jacquet Y., Rangeard D., Courteille E., Sonebi M. Nailing of layers: a promising way to reinforce concrete 3D printing structures. Materials. 2020. No. 13. 1518. https://doi.org/10.3390/ma13071518
17. Bester F., van den Heever M., Kruger J., Cho S., van Zijl G. Steel fiber links in 3D printed concrete. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. Eindhoven, Netherlands. 2020, pp. 398–406.
18. Geneidy O., Kumarji S., Dubor A., Sollazzo A. simultaneous reinforcement of concrete while 3D printing. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. Eindhoven, Netherlands. 2020, pp. 895–905.
19. Marchment T., Sanjayan J. Penetration reinforcing method for 3D concrete printing. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. Eindhoven, Netherlands. 2020, pp. 680–690.
20. Hass L., Bos F. Bending and pull-out tests on a novel screw type reinforcement for extrusion-based 3d printed concrete. In Proceedings of the Second RILEM Inter-national Conference on Concrete and Digital Fabrication. Eindhoven, Netherlands. 2020, pp. 632–645.
21. Mechtcherine V., Grafe J., Nerella V.N., Spaniol E., Hertel M., Füssel U. 3D-printed steel reinforcement for digital concrete construction – manufacture, mechanical properties and bond behaviour. Construction and Building Materials. 2018. No. 179, pp. 125–137. https://doi.org/10.1016/j.conbuildmat.2018.05.202
22. Weger D., Baier D., Straβer A., Prottung S., Kränkel T., Bachmann A., Gehlen C., Zäh M. Reinforced particle-bed printing by combination of the selective paste intrusion method with wire and arc additive manufacturing – a first feasibility study. In Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. Eindhoven, Netherlands. 2020, pp. 978–987.
23. Katzer J., Szatkiewicz T. Properties of concrete elements with 3-D printed formworks which substitute steel reinforcement. Construction and Building Materials. 2019. No. 210, pp. 157–161. https://doi.org/10.1016/j.conbuildmat.2019.03.204
24. Bos F.P., Ahmed Z.Y., Jutinov E.R., Salet T.A.J.M. Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials. 2017. No. 10 (11). 1314. doi: 10.3390/ma10111314
25. Mechtcherine V., Michael A., Liebscher M., Schmeier T. Extrusion-based additive manufacturing with carbon reinforced concrete: concept and feasibility study. Materials. 2020. No. 132568. DOI: 10.3390/ma13112568
26. Ducoulombier N., Demont L., Chateau C., Bornert M., Caron J.-F. Additive manufacturing of anisotropic concrete: a flow-based pultrusion of continuous fibers in a cementitious matrix. Procedia Manufacturing. 2020. Vol. 47, pp. 1070–1077. https://doi.org/10.1016/j.promfg.2020.04.117
27. Lim J.H., Panda B., Pham Q.-C. Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement. Construction and Building Materials. 2018. No. 178, pp. 32–41. https://doi.org/10.1016/j.conbuildmat.2018.05.010
28. Ma G., Li Z., Wang L., Wang F., Sanjayan J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Construction and Building Materials. 2019. No. 202, pp. 770–783. https://doi.org/10.1016/j.conbuildmat.2019.01.008
29. Ding T., Xiao J., Zou S., Zhou X. Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Composite Structure. 2020. No. 254. 112808. https://doi.org/10.1016/j.compstruct.2020.112808
30. Славчева Г.С., Артамонова О.В. Реологическое поведение дисперсных систем для строительной 3D-печати: проблема управления на основе возможностей арсенала «нано» // Нанотехнологии в строительстве: научный интернет-журнал. 2018. Т. 10 (3). С. 107–122. https:// dx.doi.org/10.15828/2075-8545-2018-10-3-107-122
30 Slavcheva G.S., Artamonova O.V. The rheological behavior of disperse systems for 3D printing in constrcution: the problem of control and possibility of «nano» tools application. Nanotekhnologii v stroitel’stve: nauchnyy internet-zhurnal. 2018. Vol. 10, No. 3, pp. 107–122. (In Russian). https:// dx.doi.org/10.15828/2075-8545-2018-10-3-107-122
31 Патент РФ 2729085 C1. Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати / Славчева Г.С., Артамонова О.В., Бритвина Е.А., Бабенко Д.С., Ибряева А.И. Заявл. 21.10.2019. Опубл. 04.08.2020.
31. Patent RF 2729085 C1. Dvukhfaznaya smes’ na osnove tsementa dlya kompozitov v tekhnologii stroitel’noi 3D-pechati [Two-phase cement-based mixture for 3d building printable composites]. Slavcheva G.S., Artamonova O.V., Britvina E.A., Babenko D.S., Ibryaeva A. Declared 21.10.2019. Published 04.08.2020. (In Russian).
32 Патент РФ 2729086 C1. Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати / Славчева Г.С., Артамонова О.В., Шведова М.А., Бритвина Е.А. Заявл. 21.10.2019. Опубл. 04.08.2020.
32. Patent RF 2729086 C1. Dvukhfaznaya smes’ na osnove tsementa dlya kompozitov v tekhnologii stroitel’noi 3D-pechati [Two-phase cement-based mixture for 3D building printable composites]. Slavcheva G.S., Artamonova O.V., Shvedova M.A., Britvina E.A. Declared 21.10.2019. Published 04.08.2020. (In Russian).
33. Патент РФ 2729220 C1. Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати / Славчева Г.С., Артамонова О.В., Шведова М.А., Бритвина Е.А. Заявл. 21.10.2019. Опубл. 04.08.2020.
33. Patent RF RF2729220 C1. Dvukhfaznaya smes’ na osnove tsementa dlya kompozitov v tekhnologii stroitel’noi 3D-pechati [Two-phase cement-based mixture for 3d building printable composites]. Slavcheva G.S., Artamonova O.V., Shvedova M.A., Britvina E.A. Declared 21.10.2019. Published 04.08.2020. (In Russian).
34. Патент РФ 2729283 C1. Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати / Славчева Г.С., Артамонова О.В., Бритвина Е.А., Бабенко Д.С., Ибряева А.И. Заявл. 21.10.2019. Опубл. 05.08.2020.
34. Patent RF 2729283 C1. Dvukhfaznaya smes’ na osnove tsementa dlya kompozitov v tekhnologii stroitel’noi 3D-pechati [Two-phase cement-based mixture for 3d building printable composites]. Slavcheva G.S., Artamonova O.V., Britvina E.A., Babenko D.S., Ibryaeva A. Declared 21.10.2019. Published 05.08.2020. (In Russian).
35. Патент РФ 2767643 C1. Наномодифицированный цементный композит для строительной 3D-печати / Артамонова О.В., Славчева Г.С., Шведова М.А., Бритвина Е.А., Бабенко Д.С. Заявл. 20.08.2021. Опубл. 18.03.2022.
35. Patent RF 2767643 C1. Nanomodifitsirovannyi tsementnyi kompozit dlya stroitel’noi 3D-pechati [Nano-modified cement composite for 3D build printing]. Artamonova O.V., Slavcheva G.S., Shvedova M.A., Britvina E.A., Babenko D.S. Declared 20.082021. Published 18.03.2022. (In Russian).

Для цитирования: Славчева Г.С., Артамонова О.В. Разработка принципов создания армированных композитов для строительных 3D-аддитивных технологий // Строительные материалы. 2022. № 12. С. 52–58. DOI: https://doi.org/10.31659/0585-430X-2022-809-12-52-58


Печать   E-mail