Полиморфизм и морфология карбонатов кальция в технологиях строительных материалов, использующих бактериальную биоминерализацию (обзор)

Журнал: №1-2-2022
Авторы:

Строкова В.В.,
Духанина У.Н.,
Балицкий Д.А.,
Дроздов О.И.,
Нелюбова В.В.,
Франк-Каменецкая О.В.,
Власов Д.Ю.

DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-82-122
УДК: 666.9

 

АннотацияОб авторахСписок литературы
Систематизированы данные зарубежных и отечественных ученых по полиморфизму и морфологии кристаллов карбонатов кальция (кальцита, арагонита, ватерита), образующихся в результате реализации природоподобных технологий получения и восстановления строительных материалов с использованием биоминерализации под действием бактерий. Рассмотрено влияние родовой принадлежности используемых бактерий, типа и концентрационных параметров прекурсоров, а также способа введения биологических агентов и прекурсоров в цементную матрицу. Проведено ранжирование по частоте формирования полиморфных модификаций и морфологических структур кристаллов карбонатов кальция и их сростков в зависимости от рецептурных и технологических факторов карбонатной биоминерализации. Положено начало в создании атласа морфоструктур продуктов карбонатной биоминерализации в биотехнологиях строительного материаловедения. Полученные результаты можно рассматривать как первые шаги к выявлению факторов управления процессами структурообразования цементных систем и созданию контролируемых технологий применения бактериальной биоминерализации для получения строительных материалов с заданными свойствами.
В.В. СТРОКОВА1, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
У.Н. ДУХАНИНА1, инженер,
Д.А. БАЛИЦКИЙ1, инженер,
О.И. ДРОЗДОВ1, магистрант,
В.В. НЕЛЮБОВА1, канд. техн. наук;
О.В. ФРАНК-КАМЕНЕЦКАЯ2, д-р геол.-минер. наук,
Д.Ю. ВЛАСОВ2, д-р биол. наук

1 Белгородский государственный технологический университет им. В.Г. Шухова (308012, г. Белгород, ул. Костюкова, 46)
2 Санкт-Петербургский государственный университет (199034, г. Санкт-Петербург, Университетская наб., 7/9)

1. Ortega-Villamagua E, Gudiño-Gomezjurado M, Palma-Cando A. Microbiologically induced carbonate precipitation in the restoration and conservation of cultural heritage materials. Molecules. 2020. Vol. 24; 25 (23). 5499. doi: 10.3390/molecules25235499. PMID: 33255349; PMCID: PMC7727839
2. Anbu P, Kang C.H., Shin Y.J., So J.S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus. 2016. 5:250. 1. doi:10.1186/s40064-016-1869-2
3. Chuo S.C., Mohamed S.F., Mohd Setapar S.H., Ahmad A., Jawaid M., Wani W.A., Yaqoob A.A., Mohamad Ibrahim M.N. Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials (Basel). 2020. Vol. 13 (21):4993. doi:10.3390/ma13214993
4. Amiri A., Basaran Z. Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance. Construction and Building Materials. 2018. Vol. 165, pp. 655–662. https://doi.org/10.1016/j.conbuildmat.2018.01.070
5. Basaran Z., Amiri A., Ersan Y., Boon N., De Belie N. Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability. Cement and Concrete Research. 2017. Vol. 98, pp. 44–49 https://doi.org/10.1016/j.cemconres.2017.04.005
6. Nguyen T., Ghorbel E., Fares H., Cousture A. Bacterial self-healing of concrete and durability assessment. Cement and Concrete Composites. 2019. Vol. 104. https://doi.org/10.1016/j.cemconcomp.2019.103340
7. Reddy B., Revathi D. An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete. Materials today proceedings. 2019. Vol. 19. No. 2, pp. 803–809 https://doi.org/10.1016/j.matpr.2019.08.135
8. Joshi S., Goyal S., Reddy M. Influence of nutrient components of media on structural properties of concrete during biocementation. Construction and Building Materials. 2018. Vol. 158, pp. 601–613 https://doi.org/10.1016/j.conbuildmat.2017.10.055
9. Chakraborty A., Mondal S. Bacterial concrete: A way to enhance the durability of concrete structures. The Indian Concrete Journal. 2017. Vol. 91, pp. 30–36.
10. Dhami N., Mukherjee A., Reddy M. Micrographical, minerological and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria. Ecological Engineering. 2016. Vol. 94, pp. 443–454. https://doi.org/10.1016/j.ecoleng.2016.06.013
11. Chahal N., Siddique R. Permeation properties of concrete made with fly ash and silica fume: Influence of ureolytic bacteria. Construction and Building Materials. 2013. Vol. 49, pp. 161–174 https://doi.org/10.1016/j.conbuildmat.2013.08.023
12. Achal V., Pan X., Özyurtb N. Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering. 2011. Vol. 37, pp. 554–559. https://doi.org/10.1016/j.ecoleng.2010.11.009
13. Achal V., Mukerjee A., Reddy M. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials. 2013. Vol. 48, pp. 1–5. https://doi.org/10.1016/j.conbuildmat.2013.06.061
14. Siddique R., Nand V., Kadrib E., Khanc M., Singha M., Rajord A. Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Construction and Building Materials. 2016. Vol. 106, pp. 461–469. https://doi.org/10.1016/j.conbuildmat.2015.12.112
15. Lva J., Ma F., Lia F., Zhanga C., Chenb J. Vaterite induced by Lysinibacillus sp. GW-2 strain and its stability. Journal of Structural Biology. 2017. Vol. 200, pp. 97–105 https://doi.org/10.1016/j.jsb.2017.09.008
16. Perito B., Marvasi M., Barabesi C., Mastromei G., Bracci S., Vendrell M., Tiano P. Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: Biotechnological perspectives for monumental stone reinforcement. Journal of Cultural Heritage. 2014. Vol. 15, pp. 345–351 https://doi.org/10.1016/j.culher.2013.10.001
17. Rong H., Wei G., Ma G., Zhang Y., Zheng X., Zhang L., Xu R. Influence of bacterial concentration on crack self-healing of cement-based materials. Construction and Building Materials. 2020. Vol. 244 https://doi.org/10.1016/j.conbuildmat.2020.118372
18. Su Y., Feng J., Jin P., Qian C. Influence of bacterial self-healing agent on early age performance of cement-based materials. Construction and Building Materials. 2019. Vol. 218, pp. 224–234 https://doi.org/10.1016/j.conbuildmat.2019.05.077
19. Mondal S., Ghosh A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Construction and Building Materials. 2018. Vol. 183, pp. 202–214 https://doi.org/10.1016/j.conbuildmat.2018.06.176
20. Mondal S., Das P., Datta P., Ghosh A. Deinococcus radiodurans: A novel bacterium for crack remediation of concrete with special applicability to low-temperature conditions. Cement and Concrete Composites. 2020. Vol. 108 https://doi.org/10.1016/j.cemconcomp.2020.103523
21. Vaezia M., Zareei S., Jahadib M. Recycled microbial mortar: Effects of bacterial concentration and calcium lactate content. Construction and Building Materials. 2020. Vol. 234. https://doi.org/10.1016/j.conbuildmat.2019.117349
22. Khaliq W., Ehsan M. Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials. 2016. Vol. 102. Part 1, pp. 349–357 https://doi.org/10.1016/j.conbuildmat.2015.11.006
23. Jonkers H., Thijssen A., Muyzer G., Copuroglu O., Schlangen E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering. 2010. Vol. 36, pp. 230–235 https://doi.org/10.1016/j.ecoleng.2008.12.036
24. Priya T., Ramesh N., Agarwal A., Bhusnur S., Chaudhary K. Strength and durability characteristics of concrete made by micronized biomass silica and Bacteria-Bacillus sphaericus. Construction and Building Materials. 2019. Vol. 226, pp. 827–838 https://doi.org/10.1016/j.conbuildmat.2019.07.172
25. Zhang Z., Ding Y., Qian S. Influence of bacterial incorporation on mechanical properties of engineered cementitious composites (ECC). Construction and Building Materials. 2019. Vol. 196, pp. 195–203 https://doi.org/10.1016/j.conbuildmat.2018.11.089
26. Jafarnia M., Saryazdi M., Moshtaghioun S. Use of bacteria for repairing cracks and improving properties of concrete containing limestone powder and natural zeolite. Construction and Building Materials. 2020. Vol. 242 https://doi.org/10.1016/j.conbuildmat.2020.118059
27. Schwantes-Cezario N., Camargo G., Couto A., Porto M., Cremasco L., Andrello A., Toralles B. Mortars with the addition of bacterial spores: Evaluation of porosity using different test methods. Journal of Building Engineering. 2020. Vol. 30. https://doi.org/10.1016/j.jobe.2020.101235
28. Kalhori H., Bagherpour R. Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Construction and Building Materials. 2017. Vol. 148, pp. 249–260. https://doi.org/10.1016/j.conbuildmat.2017.05.074
29. Dovom H., Moghaddam A., Karrabi M. Induction of microbial carbonate precipitation as a sustainable strategy for post-improvement and remediation of cold mix asphalt. Construction and Building Materials. 2020. Vol. 256. https://doi.org/10.1016/j.conbuildmat.2020.119435
30. Qian C., Ren L., Xue B., Cao T. Bio-mineralization on cement-based materials consuming CO2 from atmosphere. Construction and Building Materials. 2016. Vol. 106, pp. 126–132 https://doi.org/10.1016/j.conbuildmat.2015.10.105
31. Abo-El-Enein S., Ali A., Talkhan F., Abdel-Gawwad H. Application of microbial biocementation to improve the physico-mechanical properties of cement mortar. HBRC Journal. 2013. Vol. 9, pp. 36–40. https://doi.org/10.1016/j.hbrcj.2012.10.004
32. Mondal S., Ghosh A. Spore-forming Bacillus subtilis vis-à-vis non-spore-forming Deinococcus radiodurans, a novel bacterium for self-healing of concrete structures: A comparative study. Construction and Building Materials. 2021. Vol. 266. DOI: 10.1016/j.conbuildmat.2020.121122
33. Nain N., Surabhi R., Yathish N., Krishnamurthy V., Deepa T., Tharannum S. Enhancement in strength parameters of concrete by application of Bacillus bacteria Construction and Building Materials. 2019. Vol. 202, pp. 904–908. https://doi.org/10.1016/j.conbuildmat.2019.01.059
34. Rauf M., Khaliq W., Khushnood A., Ahmed I. Comparative performance of different bacteria immobilized in natural fibers for self-healing in concrete. Construction and Building Materials. 2020. Vol. 258. https://doi.org/10.1016/j.conbuildmat.2020.119578
35. Zhangab J., Zhao C., Zhou A., Yang C., Zhao L., Li Z. Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Construction and Building Mate-rials. 2019. Vol. 224, pp. 815–822. https://doi.org/10.1016/j.conbuildmat.2019.07.129
36. Wiktor V., Jonkers H. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites. 2011. Vol. 33, pp. 763–770. https://doi.org/10.1016/j.cemconcomp.2011.03.012
37. Wang J., Tittelboom K., Belie N., Verstraeteb W. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials. 2012. Vol. 26, pp. 532–540 https://doi.org/10.1016/j.conbuildmat.2011.06.054
38. González A., Parraguez A., Corvalán L., Correac N., Castrod J., Stuckrath C., González M. Evaluation of Portland and Pozzolanic cement on the self-healing of mortars with calcium lactate and bacteria. Construction and Building Materials. 2020. Vol. 257. https://doi.org/10.1016/j.conbuildmat.2020.119558
39. Gupta S., Kua H., Pang S. Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration. Cement and Concrete Composites. 2018. Vol. 86, pp. 238–254. https://doi.org/10.1016/j.cemconcomp.2017.11.015
40. Chen H., Qian C., Huang H. Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Construction and Building Materials. 2016. Vol. 126, pp. 297–303. https://doi.org/10.1016/j.conbuildmat.2016.09.023
41. Stuckrath C., Serpell R., Valenzuela L., Lopez M. Quantification of chemical and biological calcium carbonate precipitation: Performance of self-healing in reinforced mortar containing chemical admixtures. Cement and Concrete Composites. 2014. Vol. 50, pp. 10–15 https://doi.org/10.1016/j.cemconcomp.2014.02.005
42. Jiang L., Jia G., Jiang C., Li Z. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications. Construction and Building Materials. 2020. Vol. 232. https://doi.org/10.1016/j.conbuildmat.2019.117222
43. Erşan Y., Hernandez-Sanabria E., Boon N., De Belie N. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cement and Concrete Composites. 2016. Vol. 70, pp. 159–170.
44. Tziviloglou E., Wiktor V., Jonkers H., Schlangen E. Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials. 2016. Vol. 122, pp. 118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080
45. Khushnood R., Qureshi Z., Shaheen S., Ali S. Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. Science of the Total Environment. 2020. Vol. 703. https://doi.org/10.1016/j.scitotenv.2019.135007
46. Xu J., Wang X., Wang B. Biochemical process of ureolysis-based microbial CaCO3 precipitation and its application in self-healing concrete. Applied Microbiology and Biotechnology. 2018. Vol. 102, pp. 3121–3132. https://doi.org/10.1007/s00253-018-8779-x
47. Xu J., Wang X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material. Construction and Building Materials. 2018. Vol. 167, pp. 1–14. https://doi.org/10.1016/j.conbuildmat.2018.02.020
48. Zhang J., Liu Y., Feng T., Zhou M., Zhao L., Zhou A., Li Z. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Construction and Building Materials. 2017. Vol. 148, pp. 610–617. https://doi.org/10.1016/j.conbuildmat.2017.05.021
49. Wang J., Mignon A., Trenson G., Vlierberghe S., Boon N., De Belie N. A chitosan based pH-responsive hydrogel for encapsulation of bacteria for self-sealing concrete. Cement and Concrete Composites. 2018. Vol. 93, pp. 309–322. https://doi.org/10.1016/j.cemconcomp.2018.08.007
50. Snoeck D., Wiktor V., Vliergerghe S., Boon N., Belie N., Wang J., Mignon A. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol. 2015. https://doi.org/10.3389/fmicb.2015.01088
51. Pei R., Liu J., Wang S., Yang M. Use of bacterial cell walls to improve the mechanical performance of concrete. Cement and Concrete Composites. 2013. Vol. 39, pp. 122–130 https://doi.org/10.1016/j.cemconcomp.2013.03.024
52. Annamalai S., Arunachalam K., Sathyanarayanan K. Production and characterization of Bio Caulk by Bacillus pasteurii and its remediation properties with carbon nano tubes on concrete fractures and fissures. Materials Research Bulletin. 2012. Vol. 47, pp. 3362–3368. https://doi.org/10.1016/j.materresbull.2012.07.024
53. Wang J.,Dewanckele J., Cnudde V., Van Vlierberghe S., Verstraete W., Belie N. X-ray computed tomography proof of bacterial-based self-healing in concrete. Cement and Concrete Composites. 2014. Vol. 53, pp. 289–304 https://doi.org/10.1016/j.cemconcomp.2014.07.014
54. Wu M., Hu X., Zhang Q., Cheng W., Xue D., Zhao Y. Application of bacterial spores coated by a green inorganic cementitious material for the self-healing of concrete cracks. Cement and Concrete Composites. 2020. Vol. 113. https://doi.org/10.1016/j.cemconcomp.2020.103718
55. Zheng T., Su Y., Qian C., Zhou H. Low alkali sulpho-aluminate cement encapsulated microbial spores for self-healing cement-based materials. Biochemical Engineering Journal. 2020. Vol. 163. https://doi.org/10.1016/j.bej.2020.107756
56. Wani I., Singh K. Effect of encapsulated bacteria on concrete properties: A review. Materials-today: proceeding. 2020. https://doi.org/10.1016/j.matpr.2020.07.540
57. Intarasoontron J., Pungrasmi W., Nuaklong P., Jongvivatsakul P., Likit-lersuang S. Comparing performances of MICP bacterial vegetative cell and microencapsulated bacterial spore methods on concrete crack healing. Construction and Building Materials. 2021. Vol. 302. 124227. https://doi.org/10.1016/j.conbuildmat.2021.124227
58. Tan L., Ke X., Li Q., Gebhard S., Ferrandiz-Mas V., Paine K., Chen W. The effects of biomineralization on the localised phase and microstructure evolutions of bacteria-based selfhealing cementitious composites. Cement and Concrete Composites. 2022. doi: https://doi.org/10.1016/ j.cemconcomp.2022.104421
59. Feurgard I., Lors C., Gagné R., Damidot D. Use of colloidal thickeners to inject and retain bacterial growth media to repair cracked concrete. Construction and Building Materials. 2020. Vol. 262. https://doi.org/10.1016/j.conbuildmat.2020.119993
60. Jongvivatsakul Р., Janprasit K., Nuaklong P., Pungrasmi W., Likitlersuang S. Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Construction and Building Materials. 2019. Vol. 212, pp. 737–744. https://doi.org/10.1016/j.conbuildmat.2019.04.035
61. Xu J., Wang X., Yao W. Coupled effects of carbonation and bio-deposition in concrete surface treatment. Cement and Concrete Composites. 2019. Vol. 104. https://doi.org/10.1016/j.cemconcomp.2019.103358
62. Kaur N.P., Majhi S., Dhami N.K., Mukherjee A. Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Construction and Building Materials. 2020. Vol. 242. https://doi.org/10.1016/j.conbuildmat.2020.118151
63. Bergh J., Miljević B., Šovljanski O., Vučetić S., Markov S., Ranogajec J., Bras A. Preliminary approach to bio-based surface healing of structural repair cement mortars. Construction and Building Materials. 2020. Vol. 248. https://doi.org/10.1016/j.conbuildmat.2020.118557
64. Lors C., Ducasse-Lapeyrusse J., Gagné R., Damidot D. Microbiologically induced calcium carbonate precipitation to repair microcracks remaining after autogenous healing of mortars. Construction and Building Materials. 2017. Vol. 141, pp. 461–469. https://doi.org/10.1016/j.conbuildmat.2017.03.026
65. De Muynck W., De Belie N., Verstraete W. Microbial carbonate precipitation in construction materials: A review. Ecological Engineering. 2010. Vol. 36, pp. 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006
66. Chunxiang Q., Jianyun W., Ruixing W., Liang C. Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Materials Science and Engineering: C. 2009. Vol. 29, pp. 1273–1280. https://doi.org/10.1016/j.msec.2008.10.025
67. Rodriguez-Navarro C., Rodriguez-Gallego M., Chekroun K., Teresa M. Conservation of ornamental stone by Myxococcus xanthus-Induced Carbonate Biomineralization. American Society for Microbiology Journals. 2003. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
68. Rodriguez-Navarro C., Jroundi F., Schiro M., Ruiz-Agudo E., González-Muñoz M. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation. American Society for Microbiology Journals. 2012. https://doi.org/10.1128/AEM.07044-11
69. De Muynck W., Cox K., De Belie N., Verstraete  W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials. 2008. Vol. 22, pp. 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011
70. Liu M .,Xia J., Chin C., Liu Z. Improving the properties of recycled aggregate pervious pavement blocks through bio-mineralization. Construction and Building Materials. 2020. Vol. 262. https://doi.org/10.1016/j.conbuildmat.2020.120065
71. García-González J., Rodríguez-Robles D., Wang J., Belie N., Pozo J., Guerra-Romero M., Juan-Valdés A. Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate. Construction and Building Materials. 2017. Vol. 154, pp. 1015–1023. https://doi.org/10.1016/j.conbuildmat.2017.08.039
72. Zhu T., Lin Y., Lu X., Dittrich M. Assessment of cyanobacterial species for carbonate precipitation on mortar surface under different conditions. Ecological Engineering. 2018. Vol. 120, pp. 154–163. https://doi.org/10.1016/j.ecoleng.2018.05.038
73. Schwantes-Cezario N., Cremasco L., Medeiros L., Teixeira G., Albino U., Lescano L., Matsumoto L., De Oliveira A., Catarini da Silva P., Toralles B. Potential of cave isolated bacteria in self-healing of cement-based materials. Journal of Building Enginee-ring. 2022. Vol. 45. 103551. https://doi.org/10.1016/j.jobe.2021.103551
74. Son H., Kim H., Park S., Lee H. Ureolytic/non-ureolytic bacteria co-cultured self-healing agent for cementitious materials crack repair. Materials (Basel). 2018. https://doi.org/10.3390/ma11050782
75. Zhu T., Paulo C., Merroun M., Dittricha M. Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecological Engineering. 2015. Vol. 82. No. 2, pp. 459–468. https://doi.org/10.1016/j.ecoleng.2015.05.017
76. Kadapure S., Deshannavar U. Bio-smart material in self-healing of concrete. Materials Today: Proceedings. 2022. Vol. 49. Part 5, pp. 1498–1503. doi.org/10.1016/j.matpr.2021.07.245.
77. Abo-El-Enein S., Ali A., Talkhan F., Abdel-Gawwad  H. Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC Journal. 2012. Vol. 8, pp. 185–192. https://doi.org/10.1016/j.hbrcj.2013.02.001
78. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В. Микробная карбонатная биоминерализация как инструмент природоподобных технологий в строительном материаловедении // Строительные материалы. 2019. № 7. С. 66–72. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
78. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V. Microbial сarbonate biomineralisation as a tool of natural-like technologies in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
79. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В., Духанина У.Н., Балицкий Д.А. Применение микробной карбонатной биоминерализации в биотехнологиях создания и восстановления строительных материалов: анализ состояния и перспективы развития // Строительные материалы. 2019. № 9. С. 83–103. DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103
79. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V., Dukhanina U.N., Balitsky D.A. Application of microbial carbonate biomineralization in biotechnologies of building materials creation and restoration: analysis of the state and prospects of development. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 83–103. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103

Для цитирования: Строкова В.В., Духанина У.Н., Балицкий Д.А., Дроздов О.И., Нелюбова В.В., Франк-Каменецкая О.В., Власов Д.Ю. Полиморфизм и морфология карбонатов кальция в технологиях строительных материалов, использующих бактериальную биоминерализацию (обзор) // Строительные материалы. 2022. № 1–2. С. 82–122. DOI: https://doi.org/10.31659/0585-430X-2022-799-1-2-82-122


Печать   E-mail