knauf b1


Оксид графена как модификатор цементных систем: анализ состояния и перспективы развития

Журнал: №1-2-2021
Авторы:

Строкова В.В.,
Лакетич С.К.,
Нелюбова В.В.,
Женмао Йе

DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-37-89
УДК: 666.9.031: 539.2

 

АннотацияОб авторахСписок литературы
Предметом настоящей работы является многокритериальный анализ результатов исследований использования оксида графена (ОГ) в качестве модифицирующей добавки цементных систем, оценка эффективности и перспективности его использования в составе цементобетонов. Публикации и собранный эмпирический материал обобщены и структурированы по следующим критериям: библиометрические показатели публикаций за десятилетний период, вид углеродного наноматериала, его свойства как в виде исходного, так и в качестве сырьевого материала для синтеза ОГ; вид вяжущего и функциональных добавок; способ стабилизации, введения и распределения ОГ в бетонной смеси; контролируемые параметры и физико-механические свойства бетона. Показано, что в большинстве рассмотренных работ нанолисты ОГ были синтезированы путем химического расслоения по методу Хаммерса. Для повышения эффективности диспергирования и распределения ОГ в бетонной смеси применяются комплексные методы с различной последовательностью введения компонентов и физико-механического воздействия, включающие предварительную стабилизацию углеродного наноматериала совместно с суперпластификатором, микронаполнителями различного состава, морфоструктуры и функционального назначения (микрокремнезем, зола, фибра и т. д.), ультразвуковую обработку (в нейтральном либо щелочном растворе), а также механическое смешение. Представлены обобщенные версии механизма взаимодействия ОГ с отдельными компонентами бетонной смеси, его влияния на процессы структурообразования модифицированного цементного камня и физико-механические свойства бетонов.
В.В. СТРОКОВА1, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
С.К. ЛАКЕТИЧ1, аспирант (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
В.В. НЕЛЮБОВА1, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.);
ЙЕ ЖЕНМАО2, д-р наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)

1 Белгородский государственный технологический университет им. В.Г. Шухова (308012, г. Белгород, ул. Костюкова, 46)
2 Школа материаловедения и инженерии, Университет Цзинаня (25002, Китай, провинция Шандунь, Цзинань, Западная дорога Нанксин-Чжуань, 336)

1. Li X., Lu Z., Chuah S., Li W., Liu Y., Duan W.H., Li Z. Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste. Composites Part A: Applied Science and Manufacturing. 2017. Vol. 100, pp. 1–8. https://doi.org/10.1016/j.compositesa.2017.05.002
2. Lu Z., Hou D., Ma H., Fan T., Li Z. Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste. Construction and Building Materials. 2016. Vol. 119, pp. 107–112. https://doi.org/10.1016/j.conbuildmat.2016.05.060
3. Lu Z., Li X., Hanif A., Chen B., Parthasarathy P., Yu J., Li Z. Early-age interaction mechanism between the graphene oxide and cement hydrates. Construction and Building Materials. 2017. Vol. 152, pp. 232–239. https://doi.org/10.1016/j.conbuildmat.2017.06.176
4. Pan Z., He L., Qiu L., Korayem A.H., Li G., Zhu J.W., Collins F., Li D., Duan W.H., Wang M.C. Mechanical properties and microstructure of a graphene oxide-cement composite. Cement and Concrete Composites. 2015. Vol. 58, pp. 140–147. https://doi.org/10.1016/j.cemconcomp.2015.02.001
5. Wang Q., Wang J., Lu C., Liu B., Zhang K., Li C. Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Carbon Materials. 2015. Vol. 30, pp. 349–356. https://doi.org/10.1016/S1872-5805(15)60194-9
6. Rafat Siddique, Ankur Mehta. Effect of carbon nanotubes on properties of cement mortars. Construction and Building Materials. 2014. Vol. 50, pp. 116–129 https://doi.org/10.1016/j.conbuildmat.2013.09.019
7. Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney, Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen, Rodney S. Ruoff. Graphene-based composite materials. Nature. 2006. Vol. 442, pp. 282–286. https://doi.org/10.1038/nature04969
8. Andy Nieto, Ankita Bisht, Debrupa Lahiri, Cheng Zhang, Arvind Agarwal. Graphene reinforced metal and ceramic matrix composites: a review. International Materials Reviews. 2017. Vol. 62. Iss. 5, pp. 241–302. https://doi.org/10.1080/09506608.2016.1219481
9. Monica J. Hanus, Andrew T. Harris. Nanotechnology innovations for the construction industry. Progress in Materials Science. 2013. Vol. 58. Iss. 7, pp. 1056–1102. https://doi.org/10.1016/j.pmatsci.2013.04.001
10. Chiu-wing Lam, John T. James, Richard McCluskey, Sivaram Arepalli, Robert L. Hunter. A Review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Critical Reviews in Toxicology. 2006. Vol. 36. Iss. 3, pp. 189–217. https://doi.org/10.1080/10408440600570233
11. Porwal H., Grasso S., Reece M.J. Review of graphene-ceramic matrix composites. Advances in Applied Ceramics Structural, Functional and Bioceramics. 2013. Vol. 112. Iss. 8, pp. 443–454. https://doi.org/10.1179/174367613X13764308970581
12. Owen C. Compton SonBinh T. Nguyen. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Nano – Micro Small. 2010. Vol. 6, pp. 711–723. https://doi.org/10.1002/smll.200901934
13. Wencai Ren, Hui-Ming Cheng. The global growth of graphene. Nature Nanotechnology. 2014. Vol. 9, pp. 726–730. https://doi.org/10.1038/nnano.2014.229
14. Elham Abbasi, Abolfazl Akbarzadeh, Mohammad Kouhi, Morteza Milani. Graphene: Synthesis, bio-applications, and properties. Artificial Cells, Nanomedicine, and Biotechnology. 2016. Vol. 44. Iss. 1, pp. 150–156. https://doi.org/10.3109/21691401.2014.927880
15. Samuel Chuah, Zhu Pan, Jay G. Sanjayan, Chien Ming Wang, Wen Hui Duan. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials. 2014. Vol. 73. Iss. 30, pp. 113–124. https://doi.org/10.1016/j.conbuildmat.2014.09.040
16. Chaoliang Tan, Xiehong Cao, Xue-Jun Wu, Qiyuan He, Jian Yang, Xiao Zhang, Junze Chen, Wei Zhao, Shikui Han, Gwang-Hyeon Nam, Melinda Sindoro, Hua Zhang. Recent advances in ultrathin two-dimensional nanomaterials. Chemical Reviews. 2017. Vol. 117. Iss. 9, pp. 6225–6331. https://doi.org/10.1021/acs.chemrev.6b00558
17. Li Zhao, Xinli Guo, Yuanyuan Liu, Chuang Ge, Zhongtao Chen, Liping Guo, Xin Shu, Jiaping Liu. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution. Carbon. 2018. Vol. 127, pp. 255–269. https://doi.org/10.1016/j.carbon.2017.11.016
18. Chen Z, Zhou X, Wang X, Guo P. Mechanical behavior of multilayer GO carbon-fiber cement composites. Construction and Building Materials. 2018. Vol. 159, pp. 5–12. https://doi.org/10.1016/j.conbuildmat.2017.10.094
19. Shenghua Lv STJL. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. CrystEngComm. 2014. Vol. 16, pp. 8508–8516.
20. Yuan Gao, Hong Wen Jing, Shu Jian Chen, Ming Rui Du, Wei Qiang Chen, Wen HuiDuan. Influence of ultrasonication on the dispersion and enhancing effect of graphene oxide-carbon nanotube hybrid nano-reinforcement in cementitious composite. Composites Part B: Engineering. 2018. Vol. 164, pp. 45–53. https://doi.org/10.1016/j.compositesb.2018.11.066.
21. Dan Li, Marc B. Müller, Scott Gilje, Richard B. Kaner, Gordon G. Wallace. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology. 2008. Vol. 3, pp. 101–105. https://doi.org/10.1038/nnano.2007.451
22. Yonathan Reches. Nanoparticles as concrete additives: Review and perspectives. Construction and Building Materials. 2018. Vol. 175. Iss. 30, pp. 483–495. https://doi.org/10.1016/j.conbuildmat.2018.04.214
23. Florence Sanchez, Konstantin Sobolev. Nanotechno-logy in concrete – A review. Construction and Building Materials. 2010. Vol. 24. Iss. 11, pp. 2060–2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
24. Maria S. Konsta-Gdoutos, Panagiotis A. Danoglidis, Maria G. Falara, Stephanos F. Nitodas. Fresh and mechanical properties, and strain sensing of nano-modified cement mortars: The effects of MWCNT aspect ratio, density and functionalization. Cement and Concrete Composites. 2017. Vol. 82, pp. 137–151. https://doi.org/10.1016/j.cemconcomp.2017.05.004
25. Jeffrey R.Potts, Daniel R.Dreyer, Christopher W. Bielawski, Rodney S.Ruoff. Graphene-based polymer nanocomposites. Polymer. 2010. Vol. 52. Iss. 1, pp. 5–25. https://doi.org/10.1016/j.polymer.2010.11.042
26. Tapas Kuila, Saswata Bose, Chang Eui Hong, Md Elias Uddin, Partha Khanra, Nam Hoon Kim, Joong Hee Lee. Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon. 2010. Vol. 49. Iss. 3, pp. 1033–1037. https://doi.org/10.1016/j.carbon.2010.10.031
27. Yanwu Zhu, Shanthi Murali, Weiwei Cai, Xuesong Li, Ji Won Suk, Jeffrey R. Potts, Rodney S. Ruoff. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials. 2010. Vol. 22. Iss. 46, pp. 5226–5226. https://doi.org/10.1002/adma.201001068
28. Qiu L, Yang X, Gou X, Yang W, Ma Z, Wallace G.G., et al. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chemistry – A European Journal. 2010. Vol. 16 (35), pp. 10653–10658.
29. Lv S.H., et al., Effects of graphene oxide on fluidity of cement paste and structure and properties of hardened cement paste. Gongneng Cailiao/Journal of Functional Materials. 2015. Vol. 46(4), pp. 4051–4056. DOI: 10.3969/j.issn.1001-9731.2015.04.010
30. Lv S.H., et al., Study on reinforcing and toughening of graphene oxide to cement-based composites. Gongneng Cailiao/Journal of Functional Materials. 2013. Vol. 44 (15), pp. 2227–2231. DOI: 10.3969/j.issn.1001-9731.2013.15.021
31. Jianlin Luo, Shuaichao Chen, Qiuyi Li, Chao Liu, Song Gao, Jigang Zhang and Junbing Guo. Influence of graphene oxide on the mechanical properties, fracture toughness, and microhardness of recycled concrete. Nanomaterials. 2019. Vol. 9. Iss. 3, p. 325. https://doi.org/10.3390/nano9030325
32. Xu. Y, Zeng J., Chen W., Jin R., Li B., Pan. Z. A holistic review of cement composites reinforced with graphene oxide. Construction and Building Materials. 2018. Vol. 171, pp. 291–302. https://doi.org/10.1016/j.conbuildmat.2018.03.147
33. Shenghua Lv, Yujuan Ma, Chaochao Qiu, Ting Sun, Jingjing Liu, Qingfang Zhou. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and Building Materials. 2013. Vol. 49, pp. 121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022
34. Geim A.K., Novoselov K.S. The rise of graphene. Nature Materials. 2007. Vol. 6, pp. 183–191. https://doi.org/10.1038/nmat1849
35. Zhou C, Li F, Hu J, Ren M, Wei J, Yu Q. Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Construction and Building Materials. 2017. Vol. 134, pp. 336–345. https://doi.org/10.1016/j.conbuildmat.2016.12.147
36. Zeyu Lu, Dongshuai Hou, Lingshi Meng, Guoxing Sun, Cong Lu, Zongjin Li Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Advances. 2015, pp. 100598–100605.
37. Lv S, Liu J, Sun T, Ma Y, Zhou Q. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Construction and Building Materials. 2014. Vol. 64, pp. 231–239. https://doi.org/10.1016/j.conbuildmat.2014.04.061
38. Lingchao Lu. Piqi Zhao. Zeyu Lu. A short discussion on how to effectively use graphene oxide to reinforce cementitious composites. Construction and Building Materials. 2018. Vol. 189, pp. 33–41. https://doi.org/10.1016/j.conbuildmat.2018.08.170
39. Lv S., Ma Y., Qiu C., Sun T., Liu J., Zhou Q., Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construc-tion and Building Materials. 2013. Vol. 49, pp. 121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022
40. Guojian Jing, Jiaming Wu, Tianyu Lei. From graphene oxide to reduced graphene oxide: Enhanced hydration and compressive strength of cement composites. Construction and Building Materials. 2020. Vol. 248. 118699. https://doi.org/10.1016/j.conbuildmat.2020.118699
41. Sam Ghazizadeh, Philippe Duffour, Neal T.Skipper, Yun Bai. Understanding the behaviour of graphene oxide in Portland cement paste. Cement and Concrete Research. 2018. Vol. 111, pp. 169–182. https://doi.org/10.1016/j.cemconres.2018.05.016
42. Min Wang, Hao Yao. Comparison study on the adsorption behavior of chemically functionalized graphene oxide and graphene oxide on cement. Materials. 2020. Vol. 13 (15). 3274. https://doi.org/10.3390/ma13153274
43. Wu-Jian Long, Tao-Hua Ye, Li-Xiao Li, Gan-Lin Feng. Electrochemical characterization and inhibiting mechanism on calcium leaching of graphene oxide reinforced cement composites. Nanomaterials. 2019. Vol. 9 (2). 288. https://doi.org/10.3390/nano9020288
44. Aleksandra Jamrozik, R.Wiśniowski, Stanislaw Stryczek. Effect of graphene oxide on properties of cement slurries. Cement, Wapno, Beton. 2018. Vol. 1, pp. 59–66.
45. Tanvir S. Qureshi, Daman K. Panesar. Impact of graphene oxide and highly reduced graphene oxide on cement based composites. Construction and Building Materials. 2019. Vol. 20, pp. 71–83. https://doi.org/10.1016/j.conbuildmat.2019.01.176
46. Arash Radman, Nazanin Joorabchi. Property assessment of concretes with graphene oxide mixed cement. IOP Conference Series Materials Science and Engineering. 2019. Vol. 652. 012043. https://doi.org/10.1088/1757-899X/652/1/012043
47. Tanvir Qureshi, Daman K Panesar. A comparison of graphene oxide, reduced graphene oxide and pure graphene: early age properties of cement composites. Conference: 2nd RILEM Spring Convention & International Conference on Sustainable Materials, Systems and Structures. (SMSS2019).
48. Yuxia Suo, Rongxin Guo, Haiting Xia, Yang Yang, Feng Yan, and Qianmin Ma. Study on modification mechanism of workability and mechanical properties for graphene oxide-reinforced cement composite. Nanomaterials and Nanotechnology. 2020. Vol. 10, pp. 1–12. https://doi.org/10.1177/1847980420912601
49. Henrik Eeg Kjaernsmo, Samdar Kakay, Kjell T Fossa, John Gronli. The Effect of Graphene Oxide on Cement Mortar. IOP Conference Series Materials Science and Engineering. 2018. Vol. 362 (1). 012012. https://doi.org/10.1088/1757-899X/362/1/012012
50. Yidong Xu. The role of graphene oxide on the hydration process and chemical shrinkage of cement composites. Ceramics Silikaty. 2020. Vol. 64 (3), pp. 1–3. https://doi.org/10.13168/cs.2020.0020
51. Babak, F., Abolfazl H., Alimorad R., Parviz G. Preparation and mechanical properties of graphene oxide: cement nanocomposites. Science World Journal. 2014. https://doi.org/10.1155/2014/276323
52. Horszczaruk E., Mijowska E., Kalenczuk R.J., Aleksandrzak M., Mijowska S. Nanocomposite of cement/graphene oxide-impact on hydration kinetics and Young’s modulus. Construction and Building Materials. 2015. Vol. 78, pp. 234–242. https://doi.org/10.1016/j.conbuildmat.2014.12.009
53. Li X., Liu Y.M., Li W.G., Li C.Y., Sanjayan J.G., Duan W.H., Li Z. Effects of graphene oxide agglo-merates on workability, hydration, microstructure and compressive strength of cement paste. Construction and Building Materials. 2017. Vol. 145, pp. 402–410. https://doi.org/10.1016/j.conbuildmat.2017.04.058
54. Li X., Wang L., Liu Y., Li W., Dong B., Duan W.H. Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength. Cement and Concrete Composites. 2018. Vol. 92, pp. 145–154. https://doi.org/10.1016/j.cemconcomp.2018.06.008
55. Lu C., Lu Z., Li Z., Leung C.K.Y. Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites. Construction and Building Materials. 2016. Vol. 120, pp. 457–464. https://doi.org/10.1016/j.conbuildmat.2016.05.122
56. Lu L., Zhao P., Lu Z. A short discussion on how to effectively use graphene oxide to reinforce cementitious composites. Construction and Building Materials. 2018. Vol. 189, pp. 33–41. https://doi.org/10.1016/j.conbuildmat.2018.08.170
57. Lu Z., Hanif A., Ning C., Shao H., Yin R., Li Z. Steric stabilization of graphene oxide in alkaline cementitious solutions: mechanical enhancement of cement composite. Materials and Design. 2017. Vol. 127, pp. 154–161. http://doi.org/10.1016/j.matdes.2017.04.083
58. Lu Z., Hanif A., Sun, G., Liang R., Parthasarathy P., Li Z. Highly dispersed graphene oxide electrodeposited carbon fiber reinforced cement-based materials with enhanced mechanical properties. Cement and Concrete Composites. 2018. Vol. 87, pp. 220–228. https://doi.org/10.1016/j.cemconcomp.2018.01.006
59. Lu Z., Hou D., Hanif A., Hao W., Li Z., Sun G. Comparative evaluation on the dispersion and stability of graphene oxide in water and cement pore solution by incorporating silica fume. Cement and Concrete Composites. 2018. Vol. 94, pp. 33–42. https://doi.org/10.1016/j.cemconcomp.2018.08.011
60. Meisam Valizadeh Kiamahalleh, Aliakbar Gholampour, Diana N.H. Tran, Togay Ozbakkaloglu, Dusan Losic. Physiochemical and mechanical properties of reduced graphene oxide-cement mortar composites: Effect of reduced graphene oxide particle size. Construction and Building Materials. Vol. 250. 118832. https://doi.org/10.1016/j.conbuildmat.2020.118832
61. Mohammed A., Sanjayan J.G., Duan W.H., Nazari A. Incorporating graphene oxide in cement composites: a study of transport properties. Construction and Building Materials. 2015. Vol. 84, pp. 341–347. https://doi.org/10.1016/j.conbuildmat.2015.01.083
62. Shang Y., Zhang D., Yang C., Liu Y., Liu Y. Effect of graphene oxide on the rheological properties of cement pastes. Construction and Building Materials. 2015. Vol. 96, pp. 20–28. https://doi.org/10.1016/j.conbuildmat.2015.07.181
63. Zhou C., Li F., Hu J., Ren M., Wei J., Yu Q. Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Construction and Building Materials. 2017. Vol. 134, pp. 336–345. https://doi.org/10.1016/j.conbuildmat.2016.12.147
64. Kavya Vallurupalli, Weina Meng, Jianhui Liu, Kamal H. Khayat. Effect of graphene oxide on rheology, hydration and strength development of cement paste. Construction and Building Materials. 2020. Vol. 265. 120311. https://doi.org/10.1016/j.conbuildmat.2020.120311
65. Pei C., Zhou X.Y., Zhu J.H., Su M.N., Wang Y.C. Synergistic effects of a novel method of preparing graphene/polyvinyl alcohol to modify cementitious material. Construction and Building Materials. 2020. Vol. 258. 119647. DOI: 10.1016/j.conbuildmat.2020.119647
66. Jing G., Ye Z., Wu J., Wang S., Cheng X., Strokova V., Nelyubova V. Introducing reduced graphene oxide to enhance the thermal properties of cement composites. Cement and concrete composites. 2020. Vol. 109. 103559. https://doi.org/10.1016/j.cemconcomp.2020.103559
67. Aliakbar Gholampour, Meisam Valizadeh Kiamahalleh, Diana N.H. Tran, Togay Ozbakkaloglu, Dusan Losic. From graphene oxide to reduced graphene oxide: impact on the physiochemical and mechanical properties of graphene-cement composites. 2017. ACS Appl. Mater. Interfaces. Vol. 9. Iss. 49, pp. 43275–43286. https://doi.org/10.1021/acsami.7b16736
68. Sekhar C. Ray. Chapter 2 – Application and uses of graphene oxide and reduced graphene oxide. applications of graphene and graphene-oxide based nanomaterials. micro and nano technologies. 2015, pp. 39–55. https://doi.org/10.1016/B978-0-323-37521-4.00002-9
69. Youli Lin, Hongjian Du. Graphene reinforced cement composites: A review. Construction and Building Materials. 2020. Vol. 265, 120312. https://doi.org/10.1016/j.conbuildmat.2020.120312
70. Tkachev S.V., Buslaeva E.Yu., Naumkin A.V., Kotova S.L., Laure I.V., Gubin S.P. Reduced graphene oxide. Inorganic Materials. 2012. Vol. 48, No. 8, pp. 796–802. DOI: 10.1134/S0020168512080158
71. Meisam Valizadeh Kiamahalleh, Aliakbar Gholampour, Diana N.H. Tran, Togay Ozbakkaloglu, Dusan Losic. Physiochemical and mechanical properties of reduced graphene oxide-cement mortar composites: Effect of reduced graphene oxide particle size. Construction and Building Materials. Vol. 250. 118832. https://doi.org/10.1016/j.conbuildmat.2020.118832
72. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004. Vol. 306. Iss. 5696, pp. 666–669. https://doi.org/10.1126/science.1102896
73. Ezzatollah Shamsaei, Felipe Basquiroto de Souza, Xupei Yao, Emad Benhelal, Abozar Akbari, Wenhui Duan. Graphene-based nanosheets for stronger and more durable concrete: A review. Construction and Building Materials. 2018. Vol. 183, pp. 642–660. https://doi.org/10.1016/j.conbuildmat.2018.06.201
74. Cristina Gómez-Navarro, Marko Burghard, Klaus Kern. Elastic properties of chemically derived single graphene sheets. Nano Letters. 2008. Vol. 7. Iss. 7, pp. 2045–2049. https://doi.org/10.1021/nl801384y
75. Karthik Chintalapudi, Rama Mohan Rao Pannem. An intense review on the performance of graphene oxide and reduced graphene oxide in an admixed cement system. Construction and Building Materials. 2020. Vol. 259. 120598. https://doi.org/10.1016/j.conbuildmat.2020.120598
76. Samuel Chuah, Wengui Li, Shu JianChen, Jay G.Sanjayan, Wen Hui Duan. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments. Construction and Building Materials. 2018. Vol. 161, pp. 519–527. https://doi.org/10.1016/j.conbuildmat.2017.11.154
77. Seda Yeşilmen, YazinAl-Najjar, Mohammad Hatam Balav, Mustafa Şahmaran, Gürkan Yıldırım, Mohamed Lachemi. Nano-modification to improve the ductility of cementitious composites. Cement and Concrete Research. 2015. Vol. 76, pp. 170–179. https://doi.org/10.1016/j.cemconres.2015.05.026
78. Bernardo Marinho, Marcos Ghislandi, Evgeniy Tkalya, Cor E. Koning, Gijsbertusde With. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technology. 2012. Vol. 221, pp. 351–358. https://doi.org/10.1016/j.powtec.2012.01.024
79. Kim H.K., Nam I.W., Lee H.K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Composite Structures. 2014. Vol. 107, pp. 60–69. https://doi.org/10.1016/j.compstruct.2013.07.042
80. Yonggang Jin, Stephen C. Hawkins, Chi P. Huynh, Shi Su. Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Enerhy&Environment Science. 2013. Vol. 6. Iss. 9, pp. 2591–2596. https://doi.org/10.1039/C3EE24441E
81. Frank Collins, John Lambert, Wen Hui Duan. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cement and Concrete Composites. 2012. Vol. 34. Iss. 2, pp. 201–207. https://doi. rg/10.1016/j.cemconcomp.2011.09.013
82. Ткачев С.В. Восстановленный оксид графена: получение, строение, свойства. Дис. … канд. хим. наук. Москва. 2012. 132 с.
82. Tkachev S.V. Reduced graphene oxide: preparation, structure, properties. Cand. Diss. (Chemistry). Moscow. 2012. 132 p. (In Russian).
83. Michael J. McAllister, Je-Luen Li, Douglas H. Adamson, Hannes C. Schniepp, Ahmed A. Abdala, Jun Liu, Margarita Herrera-Alonso, David L. Milius, Roberto Car, Robert K. Prud’homme, and Ilhan A. Aksay. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials. 2007. Vol. 19. Iss. 18, pp. 4396–4404. https://doi.org/10.1021/cm0630800
84. Sean E. Lowe, Yu Lin Zhong. Challenges of industrial-scale graphene oxide production. Graphene Oxide: Fundamentals and Applications Chapter. 2016. Vol. 13. https://doi.org/10.1002/9781119069447.ch13
85. Li W., Li X., Chen S.J., Liu Y.M., Duan W.H., Shah S.P. Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste. Construction and Building Materials. 2017. Vol. 136, pp. 506–514. https://doi.org/10.1016/j.conbuildmat.2017.01.066
86. Li W., et al. Effects of nanoalumina and graphene oxide on early-age hydration and mechanical properties of cement paste. Journal of Materials in Civil Engineering. 2017. Vol. 29 (9). DOI: 10.1061/(ASCE)MT.1943-5533.0001926
87. Lv S., et al. Regulation of go on cement hydration crystals and its toughening effect. Magazine of Concrete Research. 2013. Vol. 65 (20), pp. 1246–1254. https://doi.org/10.1680/macr.13.00190
88. Li Zhao, Xinli Guo, Chuang Ge, Qi Li, Liping Guo, Xin Shu, Jiaping Liu. Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites. Composites Part B: Engineering. 2017. Vol. 113, pp. 308–316. https://doi.org/10.1016/j.compositesb.2017.01.056
89. Lv S., Zhang J., Zhu L., Jia C. Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability. Materials. 2016. Vol. 9 (11). 924. DOI: 10.3390/ma9110924
90. Lv S., Hu H., Zhang J., Luo X., Lei Y., Sun L. Fabrication of GO/cement composites by incorporation of few-layered GO nanosheets and characterization of their crystal/chemical structure and properties. Nanomaterials. 2017. Vol. 7 (12). 457. DOI: 10.3390/nano7120457
91. Tong T., Fan Z., Liu Q., Wang S., Tan S., Yu Q. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro-properties of cementitious materials. Construction and Building Materials. 2016. Vol. 106, pp. 102–114. https://doi.org/10.1016/j.conbuildmat.2015.12.092
92. Li Zhao, Xinli Guo, Chuang Ge, Qi Li, Liping Guo, Xin Shu, Jiaping Liu. Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Construction and Building Materials. 2016. Vol. 113, pp. 470–478. https://doi.org/10.1016/j.conbuildmat.2016.03.090
93. Lv S.H., Deng L.J., Yang W.Q., Zhou Q.F., Cui Y.Y. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites. Cement and Concrete Composites. 2016. Vol. 66, pp. 1–9. https://doi.org/10.1016/j.cemconcomp.2015.11.007
94. Xiangyu Li, Asghar Habibnejad Korayem, Chenyang Li, Yanming Liu, Hongsen He, Jay G. Sanjayan, Wen Hui Duan. Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Construction and Building Materials. 2016. Vol. 123, pp. 327–335. https://doi.org/10.1016/j.conbuildmat.2016.07.022
95. Shuya Bai, Linhua Jiang, Ning Xu, Ming Jin, Shaobo Jiang. Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume. Construction and Building Materials. 2018. Vol. 164, pp. 433–441. https://doi.org/10.1016/j.conbuildmat.2017.12.176
96. Qin Wang, Xinyou Cui, Jian Wang, Shiyu Lv, Chunxiang Lv, Yichen Dong. Effect of fly ash on rheological properties of graphene oxide cement paste. Construction and Building Materials. 2017. Vol. 138, pp. 35–44. https://doi.org/10.1016/j.conbuildmat.2017.01.126
97. Baoguo Han, Qiaofeng Zheng, Shengwei Sun, Sufen Dong, Liqing Zhang, Xun Yu, Jinping Ou. Enhancing mechanisms of multi-layer graphenes to cementitious composites. Composites Part A: Applied Science and Manufacturing. 2017. Vol. 101, pp. 143–150. https://doi.org/10.1016/j.compositesa.2017.06.016
98. Sungjin Park, Kyoung-Seok Lee, Gulay Bozoklu, Weiwei Cai, Son Binh T. Nguyen, and Rodney S. Ruoff. Graphene oxide papers modified by divalent ions–enhancing mechanical properties via chemical cross-linking. ACS Nano. 2018. Vol. 2, Iss. 3, pp. 572–578. https://doi.org/10.1021/nn700349a
99. Lei Wu, Lin Liu, Bin Gao, Rafael Muñoz-Carpena, Ming Zhang, Hao Chen, Zuhao Zhou, Hao Wang. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling. Langmuir. 2013. Vol. 29, Iss. 49, pp. 15174–15181. https://doi.org/10.1021/la404134x
100. Xiangyu Li, Chenyang Li, Yanming Liu, Shu Jian Chen, C.M. Wang, Jay G. Sanjayan & Wen Hui Duan. Improvement of mechanical properties by incorporating graphene oxide into cement mortar. Mechanics of Advanced Materials and Structures. 2018. Vol. 25, Iss. 15–16: Special Issue of the Mechanics of Advanced Materials and Structures, Honoring Professor J.N. Reddy on his 70th Birthday, pp. 1313–1322. https://doi.org/10.1080/15376494.2016.1218226
101. Florence Sanchez, Chantal Ince. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Composites Science and Technology. 2009. Vol. 69, Iss. 7–8, pp. 1310–1318. https://doi.org/10.1016/j.compscitech.2009.03.006
102. Shuya Bai, Linhua Jiang, Ning Xu, Ming Jin, Shaobo Jiang. Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume. Construction and Building Materials. 2018. Vol. 164, pp. 433–441. https://doi.org/10.1016/j.conbuildmat.2017.12.176
103. Liu Q., Xu Q., Yu Q., Gao R., Tong T. Experimental investigation on mechanical and piezoresistive properties of cementitious materials containing graphene and graphene oxide nanoplatelets. Construction and Building Materials. 2016. Vol. 127, pp. 565–576. https://doi.org/10.1016/j.conbuildmat.2016.10.024
104. Sharma S., Kothiyal N.C. Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocomposites. Construction and Building Materials. 2016. Vol. 115, pp. 256–268. https://doi.org/10.1016/j.conbuildmat.2016.04.019
105. Wang M., Wang R., Yao H., Farhan S., Zheng S., Du C. Study on the three dimensional mechanism of graphene oxide nanosheets modified cement. Construction and Building Materials. 2016. Vol. 126, pp. 730–739. https://doi.org/10.1016/j.conbuildmat.2016.09.092
106. Kang D., Seo K.S., Lee H.Y., Chung W. Experimental study on mechanical strength of GO-cement composites. Construction and Building Materials. 2017. Vol. 131, pp. 303–308. https://doi.org/10.1016/j.conbuildmat.2016.11.083
107. Mokhtar M.M., Abo-El-Enein S.A., Hassaan M.Y., Morsy M.S., Khalil M.H. Mechanical performan-ce, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement. Construction and Building Materials. 2017. Vol. 138, pp. 333–339. https://doi.org/10.1016/j.conbuildmat.2017.02.021
108. Hou D., Lu Z., Li X., Ma H., Li Z. Reactive molecular dynamics and experimental study of graphene-cement composites: structure, dynamics and reinforcement mechanisms. Carbon. 2017. Vol. 115, pp. 188–208. https://doi.org/10.1016/j.carbon.2017.01.013

Для цитирования: Строкова В.В., Лакетич С.К., Нелюбова В.В., Женмао Йе. Оксид графена как модификатор цементных систем: анализ состояния и перспективы развития // Строительные материалы. 2021. № 1–2. С. 37–89. DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-37-89


Печать   E-mail