23 11 2021 knauf gzhel Строительные материалы 800х85px v1


Композиционные подрельсовые основания. Конструкции

Журнал: №10-2020
Авторы:

Кондращенко В.И.,
Савин А.В.,
Чжуан Ван

DOI: https://doi.org/10.31659/0585-430X-2020-785-10-52-76
УДК: 625.1

 

АннотацияОб авторахСписок литературы
Обобщен мировой опыт применения подрельсовых оснований (шпал, мостовых и переводных брусьев), включая как традиционные конструкции из дерева, стали и железобетона, так и инновационные композиционные конструкции (пластиковые, композитные) на полимерных связующих. Обобщены типы конструкций композиционных подрельсовых оснований, нашедших применение или находящихся на стадии практической реализации, их особенности работы в пути, применяемые типы скреплений, а также типичные дефекты таких конструкций. Предложена классификация конструкций композиционных подрельсовых оснований. Обсуждаются история эволюции и тенденции их развития, которые могут служить ценным ориентиром для оптимизации конструкций, расширения их производства и применения на железнодорожном транспорте. На основе анализа более чем 120 литературных источников делается вывод о преимуществах композиционных подрельсовых оснований в техническом, экономическом и экологическом аспектах по мере обострения ресурсного и экологического кризиса, в условиях которого применение композиционных подрельсовых оснований становится перспективным направлением развития железнодорожной отрасли.
В.И. КОНДРАЩЕНКО, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
А.В. САВИН, д-р техн. наук, проректор,
Чжуан ВАН, аспирант (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)

Российский университет транспорта (127994, г. Москва, ул. Образцова, 9, стр. 9)

1. Esveld C. Modern Railway Track (2nd Editon). Delft: MRT Proctions. 2001. 740 p.
2. Koike Y., Nakamura T., Hayano K., et al. Numerical method for evaluating the lateral resistance of sleepers in ballasted tracks. Soils and Foundations. 2014. Vol. 54. Iss. 3, pp. 502–514. DOI: https://doi.org/10.1016/j.sandf.2014.04.014
3. Трынкова О.Н. Биография дорог: конструкции твердых покрытий // Мир транспорта. 2010. № 1. C. 176–182.
3. Trynkova O.N. Road Biography: Hard Pavement Structures. World of transport. 2010. No. 1, pp. 176–182. (In Russian).
4. Железнодорожный транспорт: Энциклопедия / Гл. ред. Н.С. Конарев. М.: Большая Российская энциклопедия, 1995. 560 с.
4. Zheleznodorozhnyi transport: Entsiklopediya [Railway transport: Encyclopedia]. Ch. ed. N.S. Konarev. Moscow: Great Russian Encyclopedia, 1995. 560 p.
5. Першин С.П. Развитие строительно-путейского дела на отечественных железных дорогах. М.: Транспорт, 1978. 296 с.
5. Pershin S.P. Razvitie stroitel'no-putejskogo dela na otechestvennyh zheleznyh dorogah [The development of construction and railway business on domestic railways]. Moscow: Transport, 1978. 296 p.
6. fib-bulletin-37. Precast concrete railway track systems, state-of-art report. 2006: International Federation for Structural Concrete.
7. The future of rail, opportunities for energy and the environment. https://www.iea.org/reports/the-future-of-rail (Date of access 22.05.2020).
8. АКСИОН РУС. Композитные шпалы. https://axionrus.ru/kompozitnayashpala/ (Дата обращения 22.05.2020).
8. AKSION RUS. Composite sleepers. https://axionrus.ru/kompozitnayashpala/ (Date of access: 22.05.2020). (In Russian).
9. TieTek сomposite ties. http://www.tietek.net/product.asp (Date of access 22.05.2020)
10. IntegriCo. IntegriTies. https://www.integrico.com/integrities (Date of access 22.05.2020).
11. Greenrail. Composite sleeper product. http://www.greenrailgroup.com/en/the-product/ (Date of access 22.05.2020).
12. Network Rail to recycle rubbish into sleepers. https://www.theguardian.com/environment/2009/feb/16/rail-recycling-plastic (Date of access 22.05.2020).
13. SICUT. Plastic Composite Railway Mainline Sleepers. http://www.sicut.co.uk/standard-sleeper-tie/ (Date of access 22.05.2020).
14. Duratrack® Composite Recycled Plastic Railway Sleepers. http://www.integratedrecycling.com.au/ railway-sleepers/ (Date of access 22.05.2020).
15. Fraunhofer ICT. Mixed Plastic Waste (MPW) Sleeper. https://nachhaltigwirtschaften.at/en/fdz/projects/susprise/railwaste-production-of-railway-sleepers-by-mixed-plastic-waste.php (Date of access 22.05.2020).
16. KEBOS. Fiber Reinforced Foamed Urethane Sleeper, http://www.kebos.cn/item/5.html (Date of access 22.05.2020)
17. Pattamaprom C., Dechojarassri D., Sirisinha C., et al. Natural rubber composites for railway sleepers: a feasibility study. Thailand: Thammasat University, 2005. 350 p.
18. Manalo A., Aravinthan T. Behavior of full-scale railway turnout sleepers from glue-laminated fiber composite sandwich structures. Journal of composites for construction. 2012. Vol. 16(6), pp. 724–736.
19. FFU. FFU synthetic railway sleepers, Sekisui Chemical GmbH, Access Date: 11 Oct 2017, Available from: http://www.sekisui-rail.com/en/home_en.html
20. Патент РФ 2179923. Способ изготовления литой шпалы для железных дорог широкой колеи / Занегин Л.А., Селиванов Н.Ф., Петров Ю.Л. Заявл. 30.03.2000. Опубл. 27.01.2002.
20. Patent RF 2179923. Sposob izgotovleniya litoi shpaly dlya zheleznykh dorog shirokoi kolei [Cast method for manufacturing sleepers for broad gauge railways]. Zanegin L.A., Selivanov N.F., Petrov Yu.L. Declared 30.03.2000. Published 27.01.2002. (In Russian).
21. Hu X.Q., Xu Y.X. The application research of basalt fiber reinforced concrete in railway sleeper. Proceedings of the 12th National Fiber Concrete Conference. China Civil Engineering Society. 2009. pp 48–53. (In Chinese).
22. Patent CN202954271. Wang S.H. Reconsolidated bamboo sleeper for mine railway. (In Chinese).
23. Soehardjo K.A., Basuki A. Utilization of bagasse and coconut fibers waste as fillers of sandwich composite for bridge railway sleepers. IOP Conference Series: Materials Science and Engineering. 2017. Vol. 223. Conference 1. 012036. DOI: https://doi.org/10.1088/1757-899X/223/1/012036
24. Khalil A.A. Mechanical testing of innovated composite polymer material for using in manufacture of railway sleepers. Journal of Polymers and the Environment. 2018. No. 26. Iss. 1, pp. 263–274. DOI: https://doi.org/10.1007/s10924-017-0940-6
25. Lampo R. Recycled plastic composite railroad crossties. Construction Innovation Forum US Army ERDC-CERL. Champaign, IL, USA. 2002. http://www.cif.org/noms/2002/13_-_Recycled_Plastic_Composite_Crossties.pdf (Date of access 22.05.2020).
26. Xiao S.L., Chen Y.X. Characteristics of Railway Sleeper Composite and Its Impacts. Forest Engineering. 2007. Vol. 23. Iss. 1, pp. 85–87. (In Chinese).
27. Стородубцева Т.Н., Федянина Н.В. Композиционный материал на основе отходов лесного комплекса для железнодорожных шпал // Современные наукоемкие технологии. 2011. № 5. С. 49–52.
27. Storodubceva T.N., Fedjanina N.V. Composite material based on forest waste for railway sleepers. Sovremennye naukoemkie tehnologii. 2011. No. 5. pp. 49–52. (In Russian).
28. Rahul S., Garish P., Gaurav K., et al. Composite railway sleeper. International Research Journal of Engineering and Technology (IRJET). 2018. Vol. 5. Iss. 9, pp. 1416-1419. https://www.irjet.net/archives/V5/i9/IRJET-V5I9257.pdf
29. Hameed A.S., Shashikala A.P. Suitability of rubber concrete for railway sleepers. Perspectives in Science. 2016. No. 8, pp. 32–35. DOI: https://doi.org/10.1016/j.pisc.2016.01.011
30. Van Erp G. M. A railway sleeper: U.S. Patent Application 14/652,806. 2015-11-19.
31. Ferdous W., Manalo A., Van Erp G., et al. Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load. Journal of Composites for Construction. 2017. Vol. 22, Iss. 2. 04017050. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000833
32. Kaewunruen S., You R., Ishida M.. Composites for timber-replacement bearers in railway switches and crossings. Infrastructures. 2017. Vol. 2(4), p. 13. DOI: 10.3390/infrastructures2040013
33. Kondrashchenko V.I., Jing G.Q., Wang C. Wood-polymer composite for the manufacture of sleepers. Materials Science Forum. Trans Tech Publications. 2019. Vol. 945, pp. 509-514. https://doi.org/10.4028/www.scientific.net/MSF.945.509
34. London & Birmingham railway. https://tringhistory.tringlocalhistorymuseum.org.uk/Railway/c10_construction_(IV).htm (Date of access 27.05.2020).
35. Rothlisberger E. History and development of wooden sleeper https://www.traverses-chemin-de-fer-bois.ch/files/4/Timber_sleeper-history_and_development.pdf
36. Скрепление рельсов: стыковые и промежуточные крепления на ЖД пути. http://promputsnab.ru/poleznoe/253-skreplenie-relsov-promezhutochnye-krepleniya-na-zhd-puti-vidy-i-naznacheniya-soedineniya-so-shpalami.html (Дата обращения: 22.05.2020).
36. Rail fastening: butt and intermediate fastenings on the railway track. http://promputsnab.ru/poleznoe/253-skreplenie-relsov-promezhutochnye-krepleniya-na-zhd-puti-vidy-i-naznacheniya-soedineniya-so-shpalami.html (Date of access: 22.05.2020). (In Russian).
37. Виртуальная фотогалерея «МЕТРО»: Врезка стрелочного перевода на Петровско-Разумовской. http://metro-photo.ru/post10440 (Дата обращения: 22.05.2020).
37. Virtual photo gallery of "SUBWAY": embedment of switch at Petro-Umumovskaya Station. http://metro-photo.ru/post10440 (Date of access: 22.05.2020). (In Russian).
38. Baulk road crossing. https://commons.wikimedia.org/wiki/File:Baulk_road_crossing.jpg (Date of access: 29.05.2020).
39. Из чего состоит стрелочный перевод: устройство и конструкция элементов, описание, неисправности. https://promputsnab.ru/poleznoe/254-iz-chego-sostoit-strelochnyy-perevod-ustroystvo-i-konstrukciya-elementov-osobennosti-stroeniya-usovika.html (Дата обращения: 22.05.2020).
39. What the switch consists of: device and structure elements, description, defects. https://promputsnab.ru/poleznoe/254-iz-chego-sostoit-strelochnyy-perevod-ustroystvo-i-konstrukciya-elementov-osobennosti-stroeniya-usovika.html (Date of access: 22.05.2020). (In Russian).
40. Infrastructure. completed projects. https://trainsinthevalley.org/infrastructure-completed-projects/ (Date of access 22.05.2020).
41. Wide Range Steel Sleepers from AGICO. http://www.railroadpart.com/rail-sleepers/steel-sleeper.html (Date of access 29.05.2020).
42. SOB – Y-steel sleeper. https://commons.wikimedia.org/wiki/File:SOB_-_Y-steel_sleeper_(29509777783).jpg (Date of access 22.05.2020).
43. Kenro the ‘in-bearer of good news’ for vossloh cogifer and rio tinto. https://kenrometal.com.au/portfolio_page/3295/ (Date of access: 20.05.2020).
44. Steel channel sleeper. https://www.indiamart.com/proddetail/steel-channel-sleeper-10632529062.html (Date of access 22.05.2020).
45. RailCorp. Timber Sleepers & Bearers; Engineering Specification SPC 231. RailCorp: Sydney, Australia, 2012.
46. Kaewunruen S., Remennikov A.M. Dynamic flexural influence on a railway concrete sleeper in track system due to a single wheel impact. Engineering Failure Analysis. 2009. Vol. 16, Iss. 3, pp. 705–712 https://doi.org/10.1016/j.engfailanal.2008.06.002
47. History of Steel Sleepers and the Latest Developments. https://www.nipponsteel.com/tech/report/nssmc/pdf/115-11.pdf (Date of access 22.05.2020).
48. Concrete sleepers. http://www.railroadpart.com/rail-sleepers/concrete-sleeper.html (Date of access 22.05.2020).
49. Heavyweight for the USA. https://www.railone.com/products-solutions/long-distance-and-freight-transport/freight-and-heavy-haul-rail-transport/usa (Date of access 22.05.2020).
50. Wide sleeper track. https://www.railone.com/products-solutions/long-distance-and-freight-transport/ballasted-track-systems (Date of access 22.05.2020).
51. RFI approves WEGH under-sleeper pads. https://www.railwaygazette.com/news/infrastructure/single-view/view/rfi-approves-wegh-under-sleeper-pads.html (Date of access 22.05.2020).
52. Austrak Vossloh. http://www.austrak.com/content/sleeper-technology/ (Date of access 22.05.2020).
53. Nederlands: NS duoblockdwarsliggers. https://commons.wikimedia.org/wiki/File:NS_dwarsliggers.JPG (Date of access 22.05.2020).
54. Riesberger K. Frame sleeper upgrade ballast track. WCRR paper. UIC. 2001. http://www.railway-research.org/IMG/pdf/035.pdf
55. Floating ladder tracks at Shinagawa Station. https://commons.wikimedia.org/wiki/File:FloatingLadder.JPG#/media/File:FloatingLadder.JPG (Date of access 22.05.2020).
56. Innovative high-speed sleeper keeps ballast in its place. https://www.railjournal.com/track/innovative-high-speed-sleeper-keeps-ballast-in-its-place/ (Date of access 22.05.2020).
57. Abetong. TCS (Tuned concrete sleeper) Information. https://www.abetong.se/en/product_portfolio (Date of access 22.05.2020).
58. Re-sleepering project. https://www.queenslandrail.com.au/Community/Projects/Pages/Re-sleeperingProject.aspx (Date of access 22.05.2020).
59. 蔡小培, 曲村, 高亮. 国内外高速铁路桥上有砟轨道轨枕结构研究现状分析. 铁道标准设计, 2011 (11): 5-10.
60. AGICO Group. How many types of railway turnouts there are? http://www.railroadfastenings.com/blog/railway-turnout-types.html (Date of access 22.05.2020).
61. Why do they have the two extra railway lines (in between the main lines) on bridges? https://www.quora.com/Why-do-they-have-the-two-extra-railway-lines-in-between-the-main-lines-on-bridges (Date of access 22.05.2020).
62. RAIL.ONE starts partnership with voestalpine VAE APCAROM. https://www.railwaypro.com/wp/rail-one-starts-partnership-with-voestalpine-vae-apcarom/ (Date of access 02.06.2020).
63. Все марки плит из обычного железобетона. http://ozjbk.by/produkciya/transportnoe-stroitelstvo/plity-bezballastnogo-mostovogo-polotna-iz-obychnogo-zhelezobetona-dlya-umerennyx-i-surovyx-klimaticheskix-uslovij/vse-marki-plit-iz-obychnogo-zhelezobetona/ (Дата обращения: 22.05.2020).
63. All grades of slabs made of ordinary reinforced concrete. http://ozjbk.by/produkciya/transportnoe-stroitelstvo/plity-bezballastnogo-mostovogo-polotna-iz-obychnogo-zhelezobetona-dlya-umerennyx-i-surovyx-klimaticheskix-uslovij/vse-marki-plit-iz-obychnogo-zhelezobetona/ (Date of access: 22.05.2020). (In Russian).
64. Андреева Л.А., Свинцов Е.С., Тарасевич Е.А. Об экономической оценке эффективности использования безбалластного верхнего строения пути [J]. Бюллетень результатов научных исследований. 2017. № 4. С. 63–69.
64. Andreeva L.A., Svincov E.S., Tarasevich E.A. On the economic evaluation of the use of ballastless track superstructure. Research Results Bulletin. 2017. No. 4, pp. 63–69. (In Russian).
65. Axion-EcoTrax. Axion EcoTrax composite railroad ties. Available from: http://www.axionsi.com/ (Date of access 22.05.2020).
66. Anne & Russ Evans. Rubber/plastic composite rail sleepers. UK: The waste & resources action programme. 2006. http://www.wrap.org.uk/sites/files/wrap/27%20-%20Rubber-Plastic%20Composite%20Rail%20Sleepers%20-%20May%202006.pdf
67. Clifton P. Plastic surgery. Rail Professional. 2009. Vol. 26.
68. Graebe G., Woidasky J., Fraunhofer J.V. Railway sleepers from mixed plastic waste-Railwaste project status information. Fraunhofer ICT, 2010. https://docplayer.net/21281128-Railway-sleepers-from-mixed-plastic-waste-railwaste-project-status-information-as-of-oct-2010.html
69. Tufflex. Sleepers. http://www.tufflex.co.za/Pages/ProductCatalogue2/SubCategoryPage/SubCategoryPage.asp?SubCategoryID=4391 (Date of access 22.05.2020).
70. Railway sleepers made from recycled plastic installed at Richmond Train Station. https://www.sustainability.vic.gov.au/About-us/Latest-news/2019/06/25/03/36/Recycled-plastic-railway-sleepers-installed-at-Richmond-Train-Station (Date of access 22.05.2020).
71. Thomas J. Nosker, Arya Tewatia. Development, testing and application of recycled plastic composite sleepers. https://www.thepwi.org/technical_hub_journal_technical_articles/pwi_journal_april_2017_vol_135_part_2/pwi_journal_0417_vol135_pt2_-_development_testing_and_application_of_recycled_plastic_composite_sleepers (Date of access 22.05.2020).
72. Plastic bridge transom from company Tianjin Yanwen Weiye. http://www.ibtwob.net/index.php?homepage=qs-yanwen1&file=sell&itemid=9280 (Date of access: 22.05.2020). (In Chinese).
73. 孙津生, 孙稳, 孙嫣. 一种塑胶铁路枕木配方工艺. CN103524923A.
74. В Москве начали использовать шпалы из одноразовой посуды и бутылок. http://naydem-vam.ru/viewtopic.php?id=25361 (Дата обращения: 22.05.2020).
74. In Moscow began to use sleepers from disposable dishes and bottles. http://naydem-vam.ru/viewtopic.php?id=25361 (Date of access: 22.05.2020). (In Russian).
75. Hunan Taohuajiang Bamboo Technology Co.,Ltd. http://www.chinathj.com/ (Дата обращения: 21.05.2020)
76. Zhong Y, Wu G, Ren H, et al. Bending properties evaluation of newly designed reinforced bamboo scrimber composite beams. Construction and Building Materials, 2017. Vol. 143, pp. 61-70. https://doi.org/10.1016/j.conbuildmat.2017.03.052
77. Lankhorst. Kunststof railway production, Access Date: 12 Dec 2018, Available from: https://www.lankhorstrail.com/en/composite-sleepers
78. Recycled plastic sleepers for main track. Access Date: 29 Aug 2019, Available from: https://www.lankhorstrail.com/en/recycled-plastic-sleepers
79. Ferdous W., Manalo A., Khennane A., et al. Geopolymer concrete-filled pultruded composite beams–concrete mix design and application. Cement and Concrete Composites. 2015. Vol. 58, pp. 1-13. https://doi.org/10.1016/j.cemconcomp.2014.12.012
80. Wood-core. Plastic composite wood core railroad ties 270lbs near indestructible, Southwest RV and Marine, Access Date: 12 Aug 2014, Available from: www.swrvandmarine.com Texas, USA.
81. 光亜式鉄枕木(Koa Iron Crosstie). http://www.koakensetsu.com/makuragi.htm (Date of access: 22.05.2020).
82. Van Erp G., Mckay M. Recent Australian developments in fibre composite railway sleepers. Electronic Journal of Structural Engineering. 2013. Vol. 13(1), pp. 62-66.
83. Кондращенко В.И. Оптимизация составов и технологических параметров получения изделий брускового типа методами компьютерного материаловедения. Дисс… д-ра техн. наук. Москва. 2005. 551 с.
83. Kondrashchenko V.I. Optimization of the compositions and technological parameters of the production of bar-type products by computational materials science methods. Diss… Doctor of Science (Engineering). Moscow. 2005. 551 p. (In Russian).
84. Кондращенко В.И., Харчевников В.И., Стородубцева Т.Н., и т.д. Древесностекловолокнистые композиционные шпалы. М.: Издательство "Спутник+". 2009. 311 c.
84. Kondrashchenko V.I., Kharchevnikov V.I., Storodubtseva T.N., etс. Drevesnosteklovoloknistye kompozitsionnye shpaly [Wood and Glass Fiber reinforced composite sleeper]. Moscow: "Sputnik+". 2009. 311 p.
85. FRP Composite Sleepers for Application on Rail Tracks and Support Spans. http://www.presentica. com/ppt-presentation/frp-composite-sleepers-for-application-on-rail-tracks-and-support-spans (Date of access 19.05.2020).
86. Hoger D.I. Fibre composite railway sleepers. Cand. Diss. University of Southern Queensland, Toowoomba, Queensland, Australia, 2000.
87. 赵继华. 复合木桥枕和轨距可调扣件的研制及其运用. 铁道勘察. 2016. No. 4, pp. 95–97.
87. Zhao Jihu. Development and application of composite wooden pillow and gauge adjustable fastener. Railway Investigation and Surveying. 2016. No. 4, pp. 95-97. (In Chinese).
88. Qiao P., Davalos J.F., Zipfel M.G. Modeling and optimal design of composite-reinforced wood railroad crosstie. Composite Structures. 1998. Vol. 41. Iss. 1, pp. 87–96. DOI: https://doi.org/10.1016/S0263- 8223(98)00051-8
89. Ahn S., Kwon S., Hwang Y.T., et al. Complex structured polymer concrete sleeper for rolling noise reduction of high-speed train system. Composite Structures. 2019. Vol. 223. 110944. DOI: https://doi.org/10.1016/j.compstruct.2019.110944
90. АпАТэК – прикладные перспективные технологии. http://www.apatech.ru/beam.html (Дата обращения: 22.05.2020).
90. ApATeK – applied advanced technologies. http://www.apatech.ru/beam.html (Date of access: 22.05.2020). (In Russian).
91. Патент РФ №2707435 по заявке № 2019105718. Композиционная шпала / Кондращенко В.И., Аскадский А.А., Аскадский А.А., Мороз П.А., ВАН Чжуан, ЦЗИН Гоцин. Заявл. 28.02.2019. Опубл. 26.11.2019. Бюл. №33.
91. Patent of Russian Federation. No. 2707435 by application No. 2019105718 Kompozitsionnaya shpala [Composite sleeper]. Kondrashchenko V.I., Askadskij A.A., Askadskij A.A., Moroz P.A., Wang Chuang, Jing Guoqing. Declared 28.02.2019. Published 26.11.2019. Bull. No. 33. (In Russian).
92. Chuang Wang, Guoqing Jing, Valery Kondrashchenko, Lu Zong, Qiang Zhou, Wei Lu. Bamboo reinforced composite railway sleeper. CN210315076U. (In Chinese)
93. Шахунянц Г.М. Железнодорожный путь. Изд. 3-е перер. и доп. М.: Транспорт, 1987. 479 с.
93. Shakhunyants G.M. Zheleznodorozhnyj put' [Railway track]. Ed. 3-re. and add. Moscow: Transport, 1987. 479 p.
94. Железнодорожный путь / Под редакцией Е.С. Ашпиза Изд. 2-е испр. и доп.: учебник. – М.: ФГБУ ДПО «Учебно-методический центр по образованию на железнодорожном транспорте», 2020. – 576 с.
94. Zheleznodorozhnyj put' [Railway track] Edited by E.S. Ashpisa: textbook. 2-nd ed. fix and add. Moscow: FGBU DPO «Training center for education in railway transport», 2020. 576 p.
95. Modular composite switch ties – a sustainable solution that streamlines installation. https://www.pandrol.com/us/insight/modular-composite-switch-ties-a-sustainable-solution-that-streamlines-installation/ (Date of access: 20.05.2020)
96. Walker S. Analysis of the behaviour of composite transom decks for railway bridges. 2015. https://eprints.usq.edu.au/29246/1/Walker_S_Manalo.pdf
97. Plastic railway sleepers for bridges. https://www.lankhorstrail.com/en/plastic-railway-sleepers (Date of access 25.05.2020)
98. Geng Hao,Zhao Jian,Shen Yu-ting,Yao Li. Analysis of temperature adaptability of composite sleeper ballastless track. Railway Standard Design. 2019.Vol. 63 No. 7. (In Chancie) DOI: 10.13238/j.issn.1004-2954.201809100007
99. Vu M., Kaewunruen S., Attard M. Nonlinear 3D finite-element modeling for structural failure analysis of concrete sleepers/bearers at an urban turnout diamond. Handbook of materials failure analysis with case studies from the chemicals, concrete and power industries. Butterworth-Heinemann. 2016, pp. 123–160.
100. Duan L, Chen W. F. Bridge engineering handbook. CRC Press. Boca Raton FL. 1999.
101. Bian X, Jiang J, Jin W, et al. Cyclic and postcyclic triaxial testing of ballast and subballast. Journal of Materials in Civil Engineering. 2016. Vol. 28(7). 04016032. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001523
102. Савин А.В. Безбалластный путь. М.: РАС, 2017. 192 с.
102. Savin A.V. Bezballastnyj put' [Ballastless railway]. Moscow: RAS. 2017. 192 p.
103. Shanghai Suyu Railway Material Co., Ltd. Elastic Rail Clip. http://ru.suyurailfastening.com/ShowProducts.asp?id=42 (Date of access: 21.05.2020)
104. Рельсовые скрепления при деревянных шпалах. https://helpiks.org/2-92600.html (Дата обращения: 28.05.2020).
104. Rail fastenings for wooden sleepers. https://helpiks.org/2-92600.html (Date of access: 28.05.2020). (In Russian).
105. Промежуточные рельсовые скрепления. http://vse-lekcii.ru/zheleznodorozhnyj-transport/zheleznodorozhnyj-put-i-putevoe-hozyajstvo/promezhutochnye-relsovye-skrepleniya (Дата обращения: 28.05.2020).
105. Intermediate rail fastenings. http://vse-lekcii.ru/zheleznodorozhnyj-transport/zheleznodorozhnyj-put-i-putevoe-hozyajstvo/promezhutochnye-relsovye-skrepleniya (Date of access: 28.05.2020). (In Russian).
106. Типовые промежуточные рельсовые скрепления. http://static.scbist.com/scb/uploaded/11386424285.pdf (Дата обращения: 21.05.2020)
106. Typical intermediate rail fasteners. http://static.scbist.com/scb/uploaded/11386424285.pdf (Date of access: 21.05.2020). (In Russian).
107. Требования к промежуточным рельсовым креплениям. http://stroiuniversal.ru/stati/relsovyie-krepleniya.html (Дата обращения: 22.05.2020).
107. Requirements for intermediate rail fasteners. http://stroiuniversal.ru/stati/relsovyie-krepleniya.html (Date of access: 22.05.2020). (In Russian).
108. Railpro Wooden Sleeper Repair Kit. https://www.hirdrail.com/wooden-sleeper-repair-kit.html (Date of access: 20.05.2020)
109. Северный путь. Экологичные шпалы от Российского производителя к Году Экологии в России! https://sevputspb.ru/ekologichnyie-shpalyi/ (Дата обращения: 22.05.2020).
109. The Northern Railway. Eco-friendly sleepers from the Russian manufacturer for the Year of Ecology in Russia! https://sevputspb.ru/ekologichnyie-shpalyi/ (Date of access: 22.05.2020). (In Russian).
110. One company is recycling plastic waste into railway sleepers. https://www.createdigital.org.au/one-company-recycling-plastic-waste-railway-sleepers/ (Date of access: 22.05.2020)
111. Lampo R., Nosker T., Sullivan H. Development, testing, and applications of recycled plastic composite cross ties. US Army Engineer R&D Centre, 2003.
112. Шпалы из бутылок. https://zen.yandex.ru/media/zaalan/shpaly-iz-butylok-5b5d97aa96f9b900a8f2488b (Дата обращения: 21.05.2020).
112. Crossties from bottles. https://zen.yandex.ru/media/zaalan/shpaly-iz-butylok-5b5d97aa96f9b900a8f2488b (Date of access: 21.05.2020). (In Russian).
113. Инструкция по содержанию деревянных шпал, переводных и мостовых брусьев железных дорог колеи 1520 мм ЦП-410. Утверждена Заместителем Министра путей сообщения В.Т. Семеновым 11.12.96.
113. Instructions for the maintenance of wooden sleepers, switches and bridge beams of railways of 1520 mm gauge CP-410. Approved by Deputy Minister of Trsansportation V. T. Semenov on 11.12.96. (In Russian).
114. Инструкция по ведению шпального хозяйства с железобетонными шпалами. Утверждена распоряжением ОАО "РЖД" от 12.02.2014 г. N 380р.
114. Instruction on sleeper management with reinforced concrete sleepers. Approved by the Order of Russian Railways “RZhD” fromт 12.02.2014 N 380р. (In Russian).
115. Lampo R. Summary of current state of practice for composite crossties. International crosstie and fastening system symposium. Urbana, IL(USA): University of Illinois. 2014.
116. The plastic composite ties in Brazil. Challenges and solutions in large scale installation. leonardo souza soares – consultant in railway engineering. 2014.
117. Zhao Zhenhang, Liu Zengjie, Jiang Wanhong, etc. Experimental study on temperature adaptability of composite sleeper ballast track. Journal of Railway Science and Engineering. 2019. Vol. 16(3), p. 606. (In Chinese).
118. Кондращенко В.И., Чжуан Ван. Композиционные подрельсовые основания. Материалы // Строительные материалы. 2020. № 1–2. С. 95–111. DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-95-111
118. Kondrashchenko V.I., Wang Ch. Composite Underrail Basements. Materials. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 95–111. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-95-111
119. Bian X, Jiang H, Chang C, et al. Track and ground vibrations generated by high-speed train running on ballastless railway with excitation of vertical track irregularities. Soil Dynamics and Earthquake Engineering. 2015. Vol. 76, pp. 29-43. DOI: 10.1016/j.soildyn.2015.02.009
120. Wolf H.E., Edwards J.R., Dersch M.S., et al. Flexural analysis of prestressed concrete monoblock sleepers for heavy-haul applications: methodologies and sensitivity to support conditions. Proceedings of the 11th International Heavy Haul Association Conference. 2015. https://core.ac.uk/download/pdf/158312257.pdf
121. Ferdous W., Manalo A. Failures of mainline railway sleepers and suggested remedies–review of current practice. Engineering Failure Analysis. 2014. Vol. 44, pp. 17-35. https://doi.org/10.1016/j.engfailanal.2014.04.020
122. Chen M.C., Wang K., Xie L. Deterioration mechanism of cementitious materials under acid rain attack. Engineering Failure Analysis. 2013. Vol. 27, pp. 272-285. https://doi.org/10.1016/j.engfailanal.2012.08.007
123. Lebreton L., Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Communications. 2019. Vol. 5(1), p. 6. https://doi.org/10.1057/s41599-018-0212-7
124. Kumar P., Imam B. Footprints of air pollution and changing environment on the sustainability of built infrastructure. Science of The Total Environment. 2013. Vol. 444, pp. 85-101. https://doi.org/10.1016/j.scitotenv.2012.11.056
125. Sanjay M.R., Madhu P., Jawaid M., et al. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Productio. 2018. Vol. 172, pp. 566-581. https://doi.org/10.1016/j.jclepro.2017.10.101
126. Якунин В.И. Стратегия развития железнодорожного транспорта Российской Федерации до 2030 г. – инфраструктурный фундамент экономического роста и повышения качества жизни в стране // Железнодорожный транспорт. 2007. № 12. C. 2–6.
126. Jakunin V.I. Strategy for development of railway transport of the Russian Federation up to 2030 – infrastructure foundation for economic growth and improvement of life quality in the country. Zheleznodorozhnyj transport. 2007. No. 12, pp. 2-6. (In Russian).
127. Копыленко В.А., Быков Ю.А., Круглов В.М., Турбин И.В., Космин В.В. Северные и восточные районы России – важнейший полигон расширения сети железных дорог страны в ХХI веке // Транспортное строительство. 2008. № 4. С. 2–4.
127. Kopylenko V.A., Bykov Ju.A., Kruglov V.M., Turbin I.V., Kosmin V.V. Northern and eastern parts of Russia are the most important site for expanding the country 's railway network in the 21-st century. Transportnoe stroitel'stvo. 2008. No. 4, pp. 2–4. (In Russian).

Для цитирования: Кондращенко В.И., Савин А.В., Чжуан Ван. Композиционные подрельсовые основания. Конструкции // Строительные материалы. 2020. № 10. С. 52–76. DOI: https://doi.org/10.31659/0585-430X-2020-785-10-52-76


Печать   E-mail