knauf b1


Применение микробной карбонатной биоминерализации в биотехнологиях создания и восстановления строительных материалов: анализ состояния и перспективы развития

Журнал: №9-2019
Авторы:

Строкова В.В.
Власов Д.Ю.
Франк-Каменецкая О.В.
Духанина У.Н.
Балицкий Д.А.

DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103
УДК: 620.22

 

АннотацияОб авторахСписок литературы
Микробная карбонатная биоминерализация – интенсивно развивающееся направление природоподобных технологий – расширяет спектр инструментов управления процессами структурообразования на различных технологических этапах жизненного цикла композиционных строительных материалов, от проектирования сырьевой смеси до самозалечивания при эксплуатации. Как любое междисциплинарное направление, технология карбонатной биоминерализации в строительном материаловедении, пройдя стадии изучения природных аналогов процессов, предполагаемых к заимствованию, теоретического обоснования перспектив их прикладного использования, перешла в стадию накопления эмпирических результатов, требующих обобщения и анализа. В работе представлен обзор публикаций за двадцатилетний период по таким критериям, как родовая принадлежность используемых бактериальных клеток; применяемые прекурсоры биохимических реакций; влияние биоминерализации на свойства композиционных материалов; характеристические особенности продуктов фазообразования. Обобщены и классифицированы существующие способы введения бактериальных культур и прекурсоров в технологиях получения композиционных строительных материалов с применением карбонатной биоминерализации.
В.В. СТРОКОВА1, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)
Д.Ю. ВЛАСОВ2, д-р биол. наук
О.В. ФРАНК-КАМЕНЕЦКАЯ2, д-р геол.-минерал. наук
У.Н. ДУХАНИНА1, инженер
Д.А. БАЛИЦКИЙ1, бакалавр

1 Белгородский государственный технологический университет им. В.Г. Шухова (308012, г. Белгород, ул. Костюкова, 46)
2 Санкт-Петербургский государственный университет (199034, г. Санкт-Петербург, Университетская наб., 7/9)

1. Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В. Микробная карбонатная биоминерализация как инструмент природоподобных технологий в строительном материаловедении // Строительные материалы. 2019. № 7. С. 66–72. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
1. Strokova V.V., Vlasov D.Yu., Frank-Kamenetskaya O.V. Microbial carbonate biomineralisation as a tool of natural-like technologies in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-66-72
2. Seifan M., Berenjian A. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Applied Microbiology and Biotechnology. 2019. Vol. 103. No. 12, рр. 4693–4708. DOI: https://doi.org/10.1007/s00253-019-09861-5
3. Zelenskaya M.S., Rusakov A.V., Frank-Kamenetskaya O.V., Vlasov D.Yu., Himelbrant D.E., Izatulina A.R. The formation of calcium oxalate hydrates by the interaction between microorganisms and apatite on the base of field and laboratory research. VI International Symposium «Biogenic – abiogenic interactions in natural and anthropogenic systems» devoted to the 150th anniversary of the Saint-Petersburg Naturalists Society. 2018, рр. 117–118.
4. Frank-Kamenetskaya O.V., Vlasov D.Yu. Biofilm mineralization by participation of lithobiotic microbial community. VI International Symposium «Biogenic – abiogenic interactions in natural and anthropogenic systems» devoted to the 150th anniversary of the Saint-Petersburg Naturalists Society. 2018, pp. 18–20.
5. Le Métayer-Levrel G., Castanier S., Orial G., Loubière J.-F., Perthuisot J.-P. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology. 1999. Vol. 26, pp. 25–34.
6. Ерофеев В.Т., Дергунова А.В., Аль Дулайми С.Д.С. Исследование биобетонов и их применение // Наукоемкие технологии и инновации: Сборник докладов Международной научно-практической конференции, посвященной 65-летию БГТУ им. В.Г. Шухова. 2019. С. 56–59.
6. Erofeev V.T., Dergunova A.V., Al Dulaymi S.D.S. Research of bio-concretes and their application. Science-intensive technologies and innovations. Collection of reports of the International Scientific and Practical Conference dedicated to the 65th anniversary of BSTU. V.G. Shukhov. 2019, pp. 56–59. (In Russian).
7. Шувалова Е.А., Салуквадзе Г.А., Федотов А.С. Обзор интеллектуальных строительных материалов // Современные технологии: актуальные вопросы, достижения и инновации: Cборник статей XVI Международной научно-практической конференции. 27 апреля 2018 г. Пенза. С. 53–55.
7. Shuvalova E.A., Salukvadze G.A., Fedotov A.S. Overview of intellectual building materials. Modern technologies: current issues, achievements and innovations collection of articles of the XVI International Scientific Practical Conference. 2018. April 27, 2018 Penza, pp. 53–55. (In Russian)
8. Чепелева К.В., Никитина О.С., Банникова А.С., Сиротская К.В. Технология биоминерализации: возможности и перспективы использования // Эпоха науки. 2016. № 8. С. 226–233.
8. Chepeleva K.V., Nikitina OS, Bannikova A.S., Sirotskaya K.V. Technology of biomineralization: opportunities and prospects of use. Epocha nauki. 2016. No. 8, рр. 226–233.
9. Ерофеев В.Т., Аль Дулайми С.Д.С., Смирнов В.Ф. Бактерии для получения самовосстанавливающихся бетонов // Интернет-журнал «Транспортные сооружения». 2018. № 4. DOI: 10.15862/07SATS418
9. Erofeev V.T., Al Dulaimi S.D.S., Smirnov V.F. Bacteria for the production of self-healing concretes. Internet-zhurnal «Transportnye sooruzheniya». 2018. No. 4. DOI: 10.15862/07SATS418
10. De Belie N., Wang J., Basaran Z., Paine K. Bacteriabased concrete. In book: Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures. 2018, рp. 31–567. DOI: 10.1016/B978-0-08-102181-1.00019-8
11. Noeiaghaei T., Mukherjee A., Dhami N., Chae S. Biogenic deterioration of concrete and its mitigation technologies. Construction and Building Materials. 2017. Vol. 149, рр. 575–586. DOI 10.1016/j.conbuildmat.2017.05.144
12. Anbu P., Kang C.-H., Shin Y.-J., So J.-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springer Plus. 2016. Vol. 5 (250), pp. 5–26. DOI: 10.1186/s40064-016-1869-2
13. Sidiq А., Gravina R., Giustozzi F. Is concrete healing really efficient? A review. Construction and Building Materials. 2019. Vol. 205, pp. 257–273.
14. De Muynck W., De Belie N., Verstraete W. Microbial carbonate precipitation in construction materials: a review. Ecological Engineering. 2010. Vol. 36, рр. 118–136. DOI:10.1016/j.ecoleng.2009.02.006
15. Huseien G., Shah K. W., Sam A.R.M. Sustainability of nanomaterials based self-healing concrete: An allinclusive insight. Journal of Building Engineering. 2019. Vol. 23, pp. 155–171. DOI: 10.1016/j.jobe.2019.01.032
16. Mohd S.R., Rizwan A.K. A review of concrete properties modified by microbial induced calcite precipitation (MICP). International Journal of Engineering and Technology. 2018. Vol. 7 (29), рр. 720–727. DOI:10.14419/ijet.v7i4.29.21646
17. DeJong J.T., Soga K., Banwart S.A., Whalley W.R., Ginn, T.R., Nelson D.C., Barkouki T. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions. Journal of the Royal Society, Interface. 2011. Vol. 8 (54), pp. 1–15. DOI:10.1098/rsif.2010.0270
18. Dhami N.K., Reddy M.S., Mukherjee A. Biomineralization of calcium carbonates and their engineered applications. Frontiers in Microbiology. 2013. Vol. 4, рр. 314. DOI: 10.3389/fmicb.2013.00314
19. Dhami N.K., Reddy M.S., Mukherjee A. Application of calcifying bacteria for remediation of stones and cultural heritage. Frontiers in Microbiology. 2014. Vol. 5, рр. 304. DOI: 10.3389/fmicb.2014.00304
20. Hammes F., Verstraete W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology. 2002. Vol. 1, рр. 3–7. DOI: 10.1023/A:1015135629155
21. Joshi S., Goyal S., Mukherjee A., Reddy M.S. Microbial healing of cracks in concrete: a review. Journal of Industrial Microbiology and Biotechnology. 2017. Vol. 44, рр. 1511–1525. DOI: 10.1007/s10295-017-1978-0
22. Ivanov V., Chu J., Stabnikov V. Basics of construction microbial biotechnology. Biotechnologies and Biomimetics for Civil Engineering. 2015, pp. 21–56. DOI: 10.1007/978-3-319-09287-4_2
23. Thakur A., Phogat A., Singh K. Bacterial concrete and effect of different bacteria on the strength and water absorption characteristics of concrete: a review. International Journal of Civil Engineering and Technology. 2016. Vol. 7, рр. 43–56.
24. Talaiekhozani A., Keyvanfar A., Shafaghat A., Andalib R., Majid M., Fulazzaky M., Rosli M., Lee C., Hussin M.W., Hamzah N., Marwar F., Haidar H. A review of self-healing concrete research development. Journal of Environmental Treatment Techniques. 2014, рр. 1–11.
25. Ganiyu A., Babr A., Ajagbe W., Nasiru M., Keyvanfar A., Majid M.Z. Properties of biological self-healing concretes; a short review. Conference: 1st International Conference on Cement & Concrete Technology, At Military Technological College – Sultanate of Oman. 2017, pp. 376–385.
26. Nasiru M., Keyvanfar A., Majid M.Z. Ghoshal S., Mohammadyan S.E.Y., Ganiyu A., Kouchaksaei M.S., Mahdi Taheri M., Kamyab H., Shirdar M.R., Mccaffer R. Tests and methods of evaluating the selfhealing efficiency of concrete: A review. Construction and Building Materials. 2016, pp. 1123–1132. DOI: 10.1016/j.conbuildmat.2016.03.017
27. Morsali S., Gamze Y. The application of bacteria as a main factor in self-healing concrete technology factor in self-healing concrete technology. 2019. https://www.researchgate.net/publication/330292236_The_application_of_bacteria_as_a_main_factor_in_selfhealing_concrete_technology_factor_in_selfhealing_concrete_technology
28. Rathnayaka I. Review on self-healing concrete with Bacillus subtilis. Conference: Annual International Research Symposium (AIRS) – 2018, At International Collage of Business and Technology, Sri Lanka. 2019, pp. 1–5.
29. Abdullah M.A.A., Abdullah N.A.H, Tompang M.F. Development and performance of bacterial selfhealing concrete – a review. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 431. DOI: 10.1088/1757-899X/431/6/062003
30. De Muynck W., Verbeken K., De Belie N., Verstraete W. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering. 2010. Vol. 36, рр. 99–111.
31. De Muynck W., Cox K., De Belie N., Verstaete W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials. 2008. Vol. 22, рр. 875–885.
32. Dhami N.K., Reddy M.S., Mukherjee A. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials. World Journal of Microbiology and Biotechnology (Formerly MIRCEN Journal of Applied Microbiology and Biotechnology). 2013. Vol. 29, рр. 2397–2406.DOI: 10.1007/s11274-013-1408-z
33. Wang J.Y., Snoeck D.,Van Vlierberghe S., Verstraete W., De Belie N. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials. 2014. Vol. 68, pp. 110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018
34. Wang J.Y., Soens H., Verstraete W., De Belie N. Selfhealing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research. 2014. Vol. 56, pp. 139–152.
35. Wang J., Mignon А., Snoeck D., Wiktor V., Boon N., De Belie N. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Frontiers in Microbiology. 2015. Vol. 6, pp. 1088. DOI:10.3389/fmicb.2015.01088
36. Ерофеев В.Т., Аль Дулайми С.Д.С. Исследование изменений прочностных характеристик цементных композитов в зависимости от концентрации в них бактерий и возраста образцов // Приволжский научный журнал. 2018. № 3 (47). С. 70–77.
36. Erofeev V.T., Al Dulaimi S.D.S. Study of changes in the strength characteristics of cement composites depending on the concentration of bacteria in them and the age of the samples. Privolzhskii nauchnyi zhurnal. 2018. No. 3 (47), рр. 70–77. (In Russian).
37. Сивков С.П., Логинова Т.В., Мымрина А.К. Биодобавки для сухих строительных смесей // Сухие строительные смеси. 2017. № 5. С. 15–18.
37. Sivkov S.P., Loginova T.V., Mymrina A.K. upplements for dry building mixes. Sukhie stroitel’nye smesi. 2017. No. 5, pp. 15–18. (In Russian).
38. Логинова Т.В., Сивков С.П. Влияние биоминерализации на прочность гипсового вяжущего // Проблемы науки. 2017. № 1 (14). С. 5–7.
38. Loginova T.V., Sivkov S.P. The influence of iomineralization on the strength of gypsum binder. Problemy nauki. 2017. No. 1 (14), рр. 5–7. (In Russian).
39. Логинова Т.В., Сивков С.П. Влияние биоминерализации на свойства цемента // Национальная Ассоциация Ученых. 2016. № 5 (21). С. 146–149.
39. Loginova T.V., Sivkov S.P. The influence of iomineralization on the properties of cement. Natsional’naya Assotsiatsiya Uchenykh. 2016. No. 5 (21), рр. 146–149. (In Russian).
40. Логинова Т.В., Сивков С.П. Исследование свойств бактериальных цементов // Успехи в химии и химической технологии. 2017. Т. 31. № 1 (182). С. 15–16.
40. Loginova T.V., Sivkov S.P. Study of the properties of bacterial cements. Uspekhi v khimii i khimicheskoi tekhnologii. 2017. Vol. 31. No. 1 (182), pp. 15–16. (In Russian).
41. Мымрина А.К., Сивков С.П. Применение биоминерализации для поверхностного упрочнения бетонов // Успехи в химии и химической технологии. 2016. Т. 30. № 7 (176). С. 72–73.
41. Mymrina A.K., Sivkov S.P. The use of biomineralization for the surface hardening of concretes. Uspekhi v khimii i khimicheskoi tekhnologii. 2016. Vol. 30. No. 7 (176), рр. 72–73. (In Russian).
42. Александрова А.К., Сивков С.П. Синтез карбонатных блоков с использованием биоцементов // Успехи в химии и химической технологии. 2018. Т. 32. № 2 (198). С. 16–18.
42. Alexandrova A.K., Sivkov S.P. Synthesis of carbonate blocks using bio-cements. Uspekhi v khimii i khimicheskoi tekhnologii. 2018. Vol. 32. No. 2 (198), рр. 16–18. (In Russian).
43. Логинова Т.В., Мымрина А.К., Сергеева Н.А., Карамаш А.О., Сивков С.П., Градова Н.Б. Улучшение свойств затвердевшего гипсового камня методами биотехнологии // Успехи в химии и химической технологии. 2015. Т. 29. № 7 (166). С. 53–55.
43. Loginova T.V., Mymrina A.K., Sergeeva N.A., Karamash A.O., Sivkov S.P., Gradova N.B. Improving the properties of hardened gypsum stone using methods of biotechnology. Uspekhi v khimii i khimicheskoi tekhnologii. 2015. Vol. 29. No. 7 (166), pp. 53–55. (In Russian).
44. Andalib R., Zaimi, M., Majid M.Z.A., Hussin M.W., Keyvanfar, A., Talaiekhozani A., Haidar H. Geopolymer bacterial concrete using microorganism. Journal of Environmental Treatment Techniques. 2015. Vol. 3, рр. 212–214.
45. Priyom S.N., Moinul Islam Md., Saiful Islam Md. An experimental investigation on the performance of bacterial concrete. Conference: 4th International Conference on Advances in Civil Engineering 2018 (ICACE 2018). https://www.researchgate.net/publication/329842409_AN_EXPERIMENTAL_INVESTIGATION_ON_THE_PERFORMANCE_OF_BACTERIAL_CONCRETE.
46. Gandhimathi A., Suji D., Elayarajah B. Bacterial concrete: Development of concrete to increase the compressive and split-tensile strength using Bacillus sphaericus. International Journal of Applied Engineering Research. 2015. Vol. 10, pp. 7125–7132.
47. Oriola F., Sani J.E., Adah A.M. Evaluation of the effect of Bacillus Pumilus precipitate on the strength and durability of concrete. Civil and Environmental Research. 2018. Vol. 10, pp. 1–10.
48. Achal V., Mukerjee A., Reddy M.S. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials. 2013. Vol. 48, рр. 1–5. DOI: 10.1016/j.conbuildmat.2013.06.061
49. Nguyen H.T., Ghorbel E., Fares H., Cousture A. Bacterial self-healing of concrete and durability assessment. Cement and Concrete Composites. 2019. Vol. 104. DOI: 10.1016/j.cemconcomp.2019.103340
50. Achal V., Pan X., Zihnio lu N.O. Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering. 2011. Vol. 37. Iss. 4, рр. 554–559. DOI: 10.1016/j.ecoleng.2010.11.009
51. Al-Salloum Y., Abbas H., Sheikh I.Q., Hadi S., Alsayed S., Almusallam T. Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar. Saudi Journal of Biological Sciences. 2017. Vol. 24. Iss. 2, рр. 286–294. DOI: 10.1016/j.sjbs.2016.01.016
52. Joshi S., Goyal S., Mukherjee A., Reddy A. Protection of concrete structures under sulfate environments by using calcifying bacteria. Construction and Building Materials. 2019. Vol. 209, рр. 156–166. DOI: 10.1016/j.conbuildmat.2019.03.079
53. Andalib R., Majid M.Z.A., Hussin M.W. Mohanadoss P., Keyvanfar A., Mirza J., Lee H.-S. Optimum concentration of Bacillus megaterium for strengthening structural concrete. Construction and Building Materials. 2016. Vol. 118, рр. 180–193. DOI: 10.1016/j.conbuildmat.2016.04.142
54. Oriola F., Olusoga F.P., Sani J.E., Wilson U., Orina O.Z. Influence of Bacillus coagulans on the compressive strength and durability of concrete. Civil and Environmental Research. 2018. Vol. 10. No. 8, pp. 7–16.
55. Yoosathaporn S., Tiangburanatham P., Bovonsombut S., Chaipanich A., Pathom-Aree W. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties. Microbiological Research. 2016. Vol. 186–187, рр. 132–138. DOI:10.1016/j.micres.2016.03.010
56. Abudoleh S.M., Mahayreh A.A., Frejat A.A., Hulaisy F.A, Hamdan, S.O. Bioconcrete development using calcite -precipitating bacteria isolated from different sources in Jordan. International Conference on Building Materials and Materials Engineering (ICBMM 2018) 2019. Vol. 278(12):01011. DOI: 10.1051/matecconf/201927801011
57. Achal V., Mukherjee A., Reddy M.S. Microbial Concrete: way to enhance the durability of building structures. Journal of Materials in Civil Engineering. 2010. Vol. 23, рр. 730–734. DOI: 10.1061/(ASCE) MT.1943-5533.0000159
58. Nain N., Surabhi R., Yathish N.V., Krishnamurthy V., Deepa T., Tharannum S. Enhancement in strength parameters of concrete by application of Bacillus bacteria. Construction and Building Materials. 2019. Vol. 202, рр. 904–908. DOI: 10.1016/j.conbuildmat.2019.01.059
59. Alshalif A.F., Irwan, J.M. Othman N., Al-Gheethi A., Khalid F.S. Improvement of mechanical properties of bio-concrete using Enterococcus faecalis and Bacillus cereus. Environmental Engineering Research. 2019. Vol. 24, pp. 630–637. DOI: 10.4491/eer.2018.306
60. Sreenivasulu B., Lingamgunta, L.K., Kannali J., Gajula S.K., Bandikari R., Dasari S., Dalavai V., Chinthala P., Gundala P.B., Kutagolla P., Balaji V.K. Subsurface endospore-forming bacteria possess biosealant properties. Scientific Reports. 2018. Vol. 8. DOI: 10.1038/s41598-018-24730-3
61. Chaurasia L., Bisht V., Singh L.P. A novel approach of biomineralization for improving microand macroproperties of concrete. Construction and Building Materials. 2018. Vol. 195, pp. 340–351. DOI: 10.1016/j.conbuildmat.2018.11.031
62. Shaheen N., Khushnood R.A., Ud Din S., Khalid A. Influence of bio-immobilized lime stone powder on self-healing behaviour of cementitious composites. IOP Conference Series: Materials Science and Engineering. 2018 Vol. 431. DOI: 10.1088/1757-899X/431/6/062002
63. Balam H. N., Mostofinejad D., Eftekhar M. Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials. 2017. Vol. 145, рр. 107–116. DOI: 10.1016/j.conbuildmat.2017.04.003
64. Yoon H.-S., Yang K.-H., Lee S.-S. Evaluation of sulfuric acid resistance of biomimetic coating mortars for concrete surface protection. Journal of the Korea Concrete Institute. 2019. Vol. 31, pp. 61–68. DOI: 10.4334/JKCI.2019.31.1.061
65. Seifan M., Ebrahiminezhad, A., Younes G., Berenjian A. Microbial calcium carbonate precipitation with high affinity to fill the concrete pore space: nanobiotechnological approach. Bioprocess and Biosystems Engineering. 2018. Vol. 42, рр. 37–46. DOI: 10.1007/s00449-018-2011-3
66. Alazhari M., Sharma T., Heath A., Cooper R., Paine K. Application of expanded perlite encapsulated bacteria and growth media for selfhealing concrete. Construction and Building Materials. 2018. Vol. 160, pp.610–619. DOI: 10.1016/j.conbuildmat.2017.11.08
67. Le Métayer-Levrel G., Castanier S., Orial G., Loubière J.-F., Perthuisot J.-P. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology. 1999. Vol. 126, pp. 25–34. DOI: 10.1016/S0037-0738(99)00029-9
68. Rodriguez-Navarro C., Fadwa J., Schiro M., RuizAgudo E., Gonzalez-Mu oz M.T. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation. Applied and Environmental Microbiology. 2012. Vol. 78, pp. 4017–4029. DOI: 10.1128/AEM.07044-11
69. Rodriguez-Navarro C., Rodriguez-Gallego M., Chekroun K.B., Gonzalez-Munoz M.T. Conservation of ornamental stone by Myxococcus xanthus – induced carbonate biomineralization. Applied and Environmental Microbiology. 2003. Vol. 69, pp. 2182–2193. DOI: 10.1128/AEM.69.4.2182-2193.2003
70. Talaiekhozani A., Keyvanfar A., Andalib R., Samadi M., Shafaghat, A., Kamyab H., Majid M.Z.A., Mohamad zin R., Fulazzaky M.A., Lee C.T., Hussin M.W. Application of Proteus mirabilis and Proteus vulgaris mixture to design self-healing concrete. Desalination and water treatment. 2013. Vol. 52. DOI:10.1080/19443994.2013.854092
71. Minto J., Tan Q., Lunn R., Mountassir El G., Guo H., Cheng X. Microbial mortar – restoration of degraded marble structures with microbially induced carbonate precipitation. Construction and Building Materials. 2018. Vol. 180, pp. 44–54. DOI: 10.1016/j.conbuildmat.2018.05.200
72. Bang S.S., Galinat J.K., Ramakrishnan V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology. 2001. Vol. 28. Iss. 4–5, pp. 404–409. DOI: 10.1016/S0141-0229(00)00348-3
73. Stabnikov V., Chu J., Ivanov V., Li Y. Erratum to: Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World journal of microbiology and biotechnology. 2013. Vol. 30. DOI: 10.1007/s11274-013-1309-1.
74. Kim D., Park K., Kim D. Effects of ground conditions on microbial cementation in soils. Materials. Vol. 7, pp. 143–156. DOI:10.3390/ma7010143
75. Terzis D., Laloui L. 3-D micro-architecture and mechanical response of soil cemented via microbialinduced calcite precipitation. Scientific reports. Vol. 8 (1). DOI: 10.1038/s41598-018-19895-w
76. Liu L., Liu H., Xiao Y., Chu J., Xiao H., Wang Y. Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bulletin of Engineering Geology and the Environment. 2018. Vol. 77. No. 4, pp. 1–11. DOI: 10.1007/s10064-017-1106-4
77. M. Sharaky A., S. Mohamed N., Elmashad M.E., M. Shredah N. Application of microbial biocementation to improve the physico-mechanical properties of sandy soil. Construction and Building Materials. 2018. Vol. 190, pp. 861–869. DOI:10.1016/j.conbuildmat.2018.09.159.
78. Kim G., Youn H. Microbially induced calcite precipitation employing environmental isolates. Materials. Vol. 9, р. 468. DOI:10.3390/ma9060468.

Для цитирования: Строкова В.В., Власов Д.Ю., Франк-Каменецкая О.В., Духанина У.Н., Балицкий Д.А. Применение микробной карбонатной биоминерализации в биотехнологиях создания и восстановления строительных материалов: анализ состояния и перспективы развития // Строительные материалы. 2019. № 9. С. 83–103. DOI: https://doi.org/10.31659/0585-430X-2019-774-9-83-103


Печать   E-mail