Технологии золь-гель синтеза нанокремнезема как модификатора материалов на основе цемента. Форсайт-анализ

Журнал: №3-2023
Авторы:

Строкова В.В.,
Нелюбова В.В.,
Кузьмин Е.О.
Рыльцова И.Г.,
Губарева Е.Н.,
Баскаков П.С.

DOI: https://doi.org/10.31659/0585-430X-2023-811-3-43-72
УДК: 539.2:666.942.6

 

АннотацияОб авторахСписок литературы
Представлен обзор публикаций по существующим методикам формирования наноразмерных частиц SiO2 посредством золь-гель технологии, применяемых в качестве модификатора в строительных материалах на основе цемента. Данные методики отличаются вариациями в широких пределах составов реакционных смесей (прекурсоров, растворителей, катализаторов, стабилизаторов и других компонентов), условиями синтеза (температура, давление, очередность введения компонентов, регулирование длительности технологических переделов) и аппаратно-техническим оформлением. Многообразие технологических решений обусловливает существенное отличие готового продукта в виде нанокремнезема (суспензия либо порошок) по размеру частиц, их фракционному составу, моно- или полидисперсности, форме и степени сферичности и морфологии их поверхности, стойкости к внешним воздействиям, агрегативной и седиментационной устойчивости, реакционной способности в среде гидратирующегося цемента и стоимости. Общая схема золь-гель синтеза наночастиц кремнезема представляет собой поэтапное прохождение следующих стадий: гидролиз, поликонденсация, гелеобразование, синерезис и сушка, каждый из которых отличается предопределяющими промежуточный или конечный продукт параметрами. Процессы, протекающие при прохождении последовательных стадий, описаны в отечественных и зарубежных теоретических и экспериментальных работах, как правило, без унификации роли рецептурных (вида и концентрации отдельных компонентов) и аппаратурно-технологических (стадийности, баротермических условий, режима гомогенизации и способа стабилизации) параметров, обусловливающих получение материала с заданным набором физико-химических характеристик, обеспечивающим эффективное использование нанокремнезема в качестве активного компонента цементных вяжущих. Проведенная систематизация, классификация и обобщение современных рецептурно-технологических параметров золь-гель синтеза и исследований механизмов переработки кремнийорганических систем обеспечат формирование новых методологических решений по получению химически активного и агрегативно-устойчивого нанодисперсного диоксида кремния при регулируемых факторах размерности, гомогенности и морфологии твердой фазы с высокой реакционной активностью в условиях гидратирующегося цемента.
В.В. СТРОКОВА, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
В.В. НЕЛЮБОВА, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
Е.О. КУЗЬМИН, инженер (аспирант) (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
И.Г. РЫЛЬЦОВА, канд. техн. наук,
Е.Н. ГУБАРЕВА, канд. техн. наук,
П.С. БАСКАКОВ, канд. техн. наук

Белгородский государственный технологический университет им. В.Г. Шухова (308012, г. Белгород, ул. Костюкова, 46)

1. Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science. 1968. Vol. 26, pp. 62–69. https://doi.org/10.1016/0021-9797(68)90272-5
2. Singh L.P., Agarwal S.K., Bhattacharyya S.K., Sharma U., Ahalawat S. Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater. nanotechnol. 2011. Vol. 1. No. 1, pp. 44–51. https://doi.org/10.5772/50
3. Meier M., Ungerer J., Klinge M., Nirschl H. Synthesis of nanometric silica particles via a modified Stöber synthesis route. Colloids and Surfaces A. 2018. Vol. 538, pp. 559–564. https://doi.org/10.1016/j.colsurfa.2017.11.047
4. Kyoung-Ku K., Hyun-Seok O., Dong-Young K., Gyurak S., Chang-Soo L. Synthesis of silica nanoparticles using biomimetic mineralization with polyallylamine hydrochloride. Journal of Colloid and Interface Science. 2017. Vol. 507, pp. 145–153. https://doi.org/10.1016/j.jcis.2017.07.115
5. Xiangyu L., Nan X., Weimin L., Wenjing L., Xiaobo W. Tribological properties of nanosilica prepared by in-situ sol-gel method. Lubrication engineering. 2017. Vol. 5. No. 1, pp. 1–12.
6. Satyanarayana M.S., Sreenath P.R., Anil K. Bhowmick, K. Dinesh Kumar. Catalyst driven preferential growth of in-situ generated nanosilica particles in the phases of incompatible polymer blend and its effect on physicomechanical properties. Polymer. 2018. Vol. 156, pp. 186–202. https://doi.org/10.1016/j.polymer.2018.10.012
7. Rahman I.A., Jafarzadeh M., Sipaut C.S. Synthesis of organo-functionalized nanosilica via a co-condensation modification using g-aminopropyltriethoxysilane (APTES). Ceramics International. 2009. Vol. 35, pp. 1883–1888. DOI: 10.1016/j.ceramint.2008.10.028
8. Mohammed Hussein J.H. Al-Atia, Hayat K. Saeed, Asia R. Fliayh, Ali J. Addie. Investigating the effects of calcination temperatures on the structure of modified nanosilica prepared by sol-gel. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. Vol. 520, pp. 590–596. https://doi.org/10.1016/j.colsurfa.2017.02.020
9. Zohreh Asadi, Reza Norouzbeigi. Synthesis of colloidal nanosilica from waste glass powder as a low cost precursor. Ceramics International. 2018. Vol. 44, pp. 22692–22697. https://doi.org/10.1016/j.ceramint.2018.09.050
10. Hamdy El-Didamony, Ezzat El-Fadaly, Ahmed A. Amer, Ibrahime H. Abazeed. Synthesis and characterization of low cost nanosilica from sodium silicate solution and their applications in ceramic engobes. Boletín de la Sociedad Española de Cerámica y Vidrio. 2020. Vol. 59. No. 1, pp. 31–43. https://doi.org/10.1016/j.bsecv.2019.06.004
11. Jafari V., Allahverdi A., Vafaei M. Ultrasound-assisted synthesis of colloidal nanosilica from silica fume: Effect of sonication time on the properties of product. Advanced Powder Technology. 2014. Vol. 25, pp. 1571–1577. https://doi.org/10.1016/j.apt.2014.05.011
12. Rahman I.A., Vejayakumaran P., Sipaut C.S., Ismail J., Abu Bakar M., Adnan R., Chee C.K. Effect of anion electrolytes on the formation of silica nanoparticles via the sol-gel process. Ceramics International. 2006. Vol. 32, pp. 691–699. https://doi.org/10.1016/j.ceramint.2005.05.004
13. Ribeiro P.C., Kiminami R.H.G.A., Costa A.C.F.M. Nanosilica synthesized by the Pechini method for potential application as a catalytic support. Ceramics International. 2014. Vol. 40, pp. 2035–2039. https://doi.org/10.1016/j.ceramint.2013.07.115
14. Asadi Z., Norouzbeigi R. Optimization of colloidal nanosilica production from expanded perlite using Taguchi design of experiments. Ceramics International. 2017. Vol. 43, pp. 11318–11323. https://doi.org/10.1016/j.ceramint.2017.05.332
15. Sheng-Hung W., Po-Hsiang W., I-Ming H., Chih-Chen H. Microfluidic synthesis of silica microcomponents using sol-gel process and stop-flow lithography. Journal of the Taiwan Institute of Chemical Engineers. 2018. Vol. 93, pp. 103–108. https://doi.org/10.1016/j.jtice.2018.09.015
16. Shakhmenko G., Juhnevica I., Korjakins A. Influence of sol-gel nanosilica on hardening processes and physically-mechanical properties of cement paste. Procedia Engineering. 2013. Vol. 57, pp. 1013–1021. https://doi.org/10.1016/j.proeng.2013.04.128
17. Julie Chandra C.S., Shadiya M.A., Bipinbal P.K., Sunil K. Narayanankutty. Effect of olivine nanosilica on the reinforcement of natural rubber nanosilica composites. Materials Today: Proceedings. 2019. Vol. 9, pp. 127–132. https://doi.org/10.1016/j.matpr.2019.02.047
18. Chrus´ciel J., S´lusarski L. Synthesis of nanosilica by the sol-gel method and its activity toward polymers. Materials Science. 2003. Vol. 21. No. 4, pp. 461–469.
19. Keshavarz M., Norhayati A. Characterization and modification of mesoporous silica nanoparticles prepared by sol-gel. Journal of Nanoparticles. 2013. No. 4, pp. 1–4. DOI: 10.1155/2013/102823
20. Ramasinghe R.L.P., Liyanage N.M.V.K. Synthesis of nanosilica using acrylic polymers as surface modifiers. Moratuwa Engineering Research Conference. 2017, pp. 73–78. DOI: 10.1109/MERCon.2017.7980459
21. Jafari V., Allahverdi A. Synthesis and characterization of colloidal nanosilica via an ultrasound assisted route based on alkali leaching of silica fume. Int. J. Nanosci. Nanotechnol. 2014. Vol. 10, pp. 145–152.
22. Фарус О.А. Исследование влияния типа катализатора на процессы гелеобразования золь-гель систем на основе тетраэтоксисилана // Вестник евразийской науки. 2015. Т. 7. №. 4 (29). С. 102.
22. Farus O.A. Study of the influence of the type of catalyst on the processes of gelation of sol-gel systems based on tetraethoxysilane. Vestnik evraziiskoi nauki. 2015. Vol. 7. No. 4 (29), pp. 102. (In Russian).
23. Mujiyanti D.W., Surianthy M.D., Junaidi A.B. The initial characterization of nanosilica from tetraethylorthosilicate (TEOS) with the addition polivynil alcohol by fourier transform infra red. IOP Conf. Series: Earth and Environmental Science. 2018. Vol. 187, pp. 1–6. DOI 10.1088/1755-1315/187/1/012056
24. Jin Seok C., Hyun-Kwuon L., Sung Jin An. Synthesis of high purity nano-silica using water glass. Korean Journal of Materials Research. 2014. Vol. 24. No. 5, pp. 271–276. DOI: 10.3740/MRSK.2014.24.5.271
25. Nguyen Xuan H., Tran Nam A., Nguyen T.T.H., Dao T.T.N., Nguyen V.T. Nanosilica synthesis and application for lead treatment in water. J. Viet. Env. 2018. Vol. 9 (5), pp. 255–263. DOI: 10.13141/jve.vol9.no5.pp255-263
26. Kiele E., Senvaitiene J., Griguceviciene A., Ramanauskas R., Raudonis R., Kareiva A. Application of sol-gel method for the conservation of copper alloys. Microchemical Journal. 2016. Vol. 124, pp. 623–628. https://doi.org/10.1016/j.microc.2015.10.003
27. Alan G. Howard, Nezar H. Khdary. Spray synthesis of monodisperse sub-micron spherical silica particles. Materials Letters. 2007. Vol. 61, pp. 1951–1954. https://doi.org/10.1016/j.matlet.2006.07.110
28. Sutha S., Yuvakkumar R., Rajendran V., Palanivelu R. Effect of thermal treatment on hydrophobicity of methyl-functionalised hybrid nano-silica particles. Materials Letters. 2013. Vol. 90, pp. 68–71. https://doi.org/10.1016/j.matlet.2012.09.018
29. Румянцева Е.Л. Получение нанодисперсной коллоидной кремниевой кислоты из техногенного сырья // Современные научные исследования и инновации. 2013. №. 11. С. 27–30.
29. Rumyantseva E.L. Obtaining nanodispersed colloidal silicic acid from technogenic raw materials. Sovremennye nauchnye issledovaniya i innovatsii. 2013. No. 11, pp. 27–30. (In Russian).
30. Фролов Ю.Г., Гродский А.С., Клещевникова С.И., Пащенко Л.А., Растегина Л.Л. Получение гидрозолей диоксидов кремния и циркония методом ионного обмена, совмещенного с электродиализом. Получение и применение гидрозолей кремнезема. Труды Московского химико-технологического института им. Д.И. Менделеева. 1979. Вып. 107. С. 31–38.
30. Frolov Yu.G., Grodsky A.S., Kleshchevnikova S.I., Pashchenko L.A., Rastegina L.L. Obtaining hydrosols of silicon dioxide and zirconium by the method of ion exchange combined with electrodialysis. Preparation and application of silica hydrosols. Proceedings of the Moscow Chemical-Technological Institute named after D.I. Mendeleev. 1979. Vol. 107, pp. 31–38. (In Russian).
31. Потапов В.В. Осаждение кремнезема из гидротермального теплоносителя с добавлением извести и легкогидролизующихся солей // Вестник КамчатГТУ. 2002. № 1. C. 156–165.
31. Potapov V.V. Precipitation of silica from a hydrothermal coolant with the addition of lime and easily hydrolyzed salts. Vestnik KamchatGTU. 2002. No. 1, pp. 156–165. (In Russian).
32. Потапов В.В., Поваров К.О., Словцов И.Б., Харлов А.Е. Разработка способов осаждения кремнезема из гидротермального теплоносителя // Химическая технология. 2003. № 5. С. 8–13.
32. Potapov V.V., Povarov K.O., Slovtsov I.B., Kharlov A.E. Development of silica precipitation methods from hydrothermal heat carrier. Khimicheskaya tekhnologiya. 2003. No. 5, pp. 8–13. (In Russian).
33. Шилова О.А. Наноразмерные пленки, получаемые из золей на основе тетраэтоксисилана, и их применение в планарной технологии изготовления полупроводниковых газовых сенсоров // Физика и химия стекла. 2005. Т. 31. № 2. С. 270–294.
33. Shilova O.A. Nanoscale films obtained from sols based on tetraethoxysilane and their application in planar technology for the manufacture of semiconductor gas sensors. Fizika i khimiya stekla. 2005. Vol. 31. No. 2, pp. 270–294. (In Russian).
34. Мошников В.А., Шилова О.А. Золь-гель технология наноструктурированных материалов // Нанотехнология: физика, процессы, диагностика, приборы. 2006. C. 205–249.
34. Moshnikov V.A., Shilova O.A. Sol-gel technology of nanostructured materials. Nanotekhnologiya: fizika, protsessy, diagnostika, pribory. 2006, pp. 205–249. (In Russian).
35. Потапов В.В., Горев Д.С., Туманов А.В., Кашутин А.Н., Горева Т.С. Получение комплексной добавки для повышения прочности бетона на основе нанодисперсного диоксида кремния гид-ротермальных растворов // Фундаментальные исследования. 2012. № 9–2. С. 404–409.
35. Potapov V.V., Gorev D.S., Tumanov A.V., Kashutin A.N., Goreva T.S. Production of a complex additive for increasing the strength of concrete based on nanodispersed silicon dioxide of hydrothermal solutions. Fundamental’nye issledovaniya. 2012. No. 9–2, pp. 404–409. (In Russian).
36. Горев Д.С., Потапов В.В., Шалаев К.С. Получение нанопорошка диоксида кремния на основе гидротермального раствора криохимической вакуумной сублимации // Вестник КРАУНЦ. Физико-математические науки. 2013. № 1. C. 56–66.
36. Gorev D.S., Potapov V.V., Shalaev K.S. Preparation of silicon dioxide nanopowder based on hydrothermal solution of cryochemical vacuum sublimation. Vestnik KRAUNTs. Fiziko-matematicheskie nauki. 2013. No. 1, pp. 56–66. (In Russian).
37. Кашутин А.Н., Потапов В.В., Шалаев К.С., Горев Д.С., Горева Т.С. Применение нанодобавки кремнезема для повышения прочности при сжатии строительного раствора М200 // Фундаментальные исследования. 2013. № 8–2. С. 275–280.
37. Kashutin A.N., Potapov V.V., Shalaev K.S., Gorev D.S., Goreva T.S. The use of silica nanoadditives to increase the compressive strength of mortar M200. Fundamental’nye issledovaniya. 2013. No. 8–2, pp. 275–280. (In Russian).
38. Hao C., Zhuojun Y., Baozong L., Yi L., Qi-Hui W. Manipulation of mesoporous silica hollow spheres by control of silica precursors. Materials Letters. 2013. Vol. 112, pp. 78–80. https://doi.org/10.1016/j.matlet.2013.09.040
39. Sinae S., Hong-Baek C., Hee Taik K. Surfactant-free synthesis of high surface area silica nanoparticles derived from rice husks by employing the Taguchi approach. Journal of Industrial and Engineering Chemistry. 2018. Vol. 61, pp. 281–287. https://doi.org/10.1016/j.jiec.2017.12.025
40. Ming N.T., Yong S.P. Synthesis of stable hollow silica nanospheres. Journal of Industrial and Engineering Chemistry. 2009. Vol. 15, pp. 365–369. https://doi.org/10.1016/j.jiec.2008.11.013
41. Zhihao X., Zhen L., Pengfei S., Changfa X. Fabrication of super-hydrophobic polypropylene hollow fiber membrane and its application in membrane distillation. Desalination. 2017. Vol. 414, pp. 10–17. https://doi.org/10.1016/j.desal.2017.03.029
42. Nicolas B., Nathanael G., Luc V., Nicolas S. Thermomechanical behavior of a novel biobased poly(furfurylalcohol)/silica nanocomposite elaborated by smart functionalization of silica nanoparticles. Polymer Degradation and Stability. 2015. Vol. 118, pp. 137–146. https://doi.org/10.1016/j.polymdegradstab.2015.04.018
43. Ershadi M., Alaei M., Rashidi A., Ramazani A., Khosravani S. Carbonate and sandstone reservoirs wettability improvement without using surfactants for Chemical Enhanced Oil Recovery (C-EOR). Fuel. 2015. Vol. 153, pp. 408–415. https://doi.org/10.1016/j.fuel.2015.02.060
44. Divya K., Xinghua W., Qitao F., Jeffrey W.C.H., Pushkar D.K., Lin L., Zhong C. Development of durable self-cleaning coatings usingorganic–inorganic hybrid sol-gel method. Applied Surface Science. 2015. Vol. 344, pp. 205–212. https://doi.org/10.1016/j.apsusc.2015.03.105
45. Peng B., Chen M., Zhou S., Wu L., Ma X. Fabrication of hollow silica spheres using droplet templates derived from a miniemulsion technique. Journal of Colloid and Interface Science. 2008. Vol. 321, pp. 67–73. https://doi.org/10.1016/j.jcis.2007.12.044
46. Daniel-da-Silva A.L., Pinto F., Lopes-da-Silva J.A., Trindade T., Goodfellow B.J., Gil A.M. Rheological behavior of thermoreversible κ-carrageenan/nanosilica gels. Journal of Colloid and Interface Science. 2008. Vol. 320, pp. 575-581. DOI: 10.1016/j.jcis.2008.01.035
47. Loґpez T., Quintana P., Martıґnez J.M., Esquivel D. Stabilization of dopamine in nanosilica sol-gel matrix to be used as a controlled drug delivery system. Journal of Non-Crystalline Solids. 2007. Vol. 353, pp. 987–989. https://doi.org/10.1016/j.jnoncrysol.2006.12.083
48. Grzegorz Checmanowski J., Szczygieł B. Effect of nanosilica type on protective properties of composite ceramic coatings deposited on steel 316L by sol-gel technique. Journal of Non-Crystalline Solids. 2008. Vol. 354, pp. 1786–1795. https://doi.org/10.1016/j.jnoncrysol.2007.08.056
49. Tadjarodi A., Haghverdi M., Mohammadi V. Preparation and characterization of nano-porous silica aerogel from rice husk ash by drying at atmospheric pressure. Materials Research Bulletin. 2012. Vol. 47, pp. 2584–2589. https://doi.org/10.1016/j.materresbull.2012.04.143
50. Başgoz O., Guler O. The unusually formation of porous silica nano-stalactite structure by high temperature heat treatment of SiO2 aerogel synthesized from rice hull. Ceramics International. 2020. Vol. 46, pp. 370–380. https://doi.org/10.1016/j.ceramint.2019.08.271
51. Fan W., Du W., Li Z., Dan N, Huang J. Abrasion resistance of waterborne polyurethane films incorporated with PU/silica hybrids. Progress in Organic Coatings. 2015. Vol. 86, pp. 125–133. https://doi.org/10.1016/j.porgcoat.2015.04.022
52. Song Y., Bu J., Zuo M., Gao Y., Zhang W., Zheng Q. Glass transition of poly (methyl methacrylate) filled with nanosilica and core-shell structured silica. Polymer. 2017. Vol. 127, pp. 141–149. https://doi.org/10.1016/j.polymer.2017.08.038
53. Mohammadpour Nazarabady M., Farzi G. Morphology control to design p(acrylic acid)/silica nanohybrids with controlled mechanical properties. Polymer. 2018. Vol. 143, pp. 289–297. https://doi.org/10.1016/j.polymer.2018.02.026
54. Satyanarayana M.S., Sreenath P.R., Bhowmick Anil K., Dinesh Kumar K. Catalyst driven preferential growth of in-situ generated nanosilica particles in the phases of incompatible polymer blend and its effect on physicomechanical properties. Polymer. 2018. Vol. 156, pp. 186–202. https://doi.org/10.1016/j.polymer.2018.10.012
55. Alasti Bonab S., Moghaddas J., Rezaei M. In-situ synthesis of silica aerogel/polyurethane inorganic-organic hybrid nanocomposite foams: Characterization, cell microstructure and mechanical properties. Polymer. 2019. Vol. 172, pp. 27–40. https://doi.org/10.1016/j.polymer.2019.03.050
56. Balamurugan M., Saravanan S. Producing nanosilica from Sorghum vulgare seed heads. Powder Technology. 2012. Vol. 224, pp. 345–350. https://doi.org/10.1016/j.powtec.2012.03.017
57. Noushad M., Ab Rahman I., Husein A., Dasmawati M. Nanohybrid dental composite using silica from biomass waste. Powder Technology. 2016. Vol. 299, pp. 19–25. https://doi.org/10.1016/j.powtec.2016.05.035
58. Chen G., Zhou S., Gu G., Wu L. Modification of colloidal silica on the mechanical properties of acrylic based polyurethane/silica composites. Colloids and Surfaces A: Physicochem. 2007. Vol. 296, pp. 29–36. https://doi.org/10.1016/j.colsurfa.2006.09.016
59. Branda F., Silvestri B., Luciani G., Costantini A., Tescione F. Synthesis structure and stability of amino functionalized PEGylated silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010. Vol. 367, pp. 12–16. https://doi.org/10.1016/j.colsurfa.2006.09.016
60. Yeoh B.W., Mohamad D., Rahman I.A., Sipaut C.S., Ghani A.M. Synthesis of nanosilica fillers by sol-gel process and surface modification. Dental materials. 2009. Vol. 25. No. 5. DOI: 10.1016/j.dental.2009.01.047
61. Ramezanzadeh B., Haeri Z., Ramezanzadeh M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chemical Engineering Journal. 2016. Vol. 303, pp. 511–528. https://doi.org/10.1016/j.cej.2016.06.028
62. Jeziorska R., Szadkowska A., Zielecka M., Wenda M., Kepska B. Morphology and thermal properties of HDPE nanocomposites: Effect of spherical silica surface modification and compatibilizer. Polymer Degradation and Stability. 2017. Vol. 145, pp. 70–78. https://doi.org/10.1016/j.polymdegradstab.2017.06.007
63. Asaro L., Manfredi L.B., Pellice S., Procaccini R., Rodriguez E.S. Innovative ablative fire resistant composites based on phenolic resins modified with mesoporous silica particles. Polymer Degradation and Stability. 2017. Vol. 144, pp. 7–16. https://doi.org/10.1016/j.polymdegradstab.2017.07.023
64. Mousavi M.A., Hassanajili Sh., Rahimpour M.R. Synthesis of fluorinated nano-silica and its application in wettability alteration near-wellbore region in gas condensate reservoirs. Applied Surface Science. 2013. Vol. 273, pp. 205–214. https://doi.org/10.1016/j.apsusc.2013.02.014
65. Danushika C.M., Rohini M. de Silva, K.M. Nalin de Silva. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials. Applied Surface Science. 2016. Vol. 360, pp. 777–788. https://doi.org/10.1016/j.apsusc.2015.11.068
66. Pantoja M., Abenojar J., Martinez M.A. Influence of the type of solvent on the development of superhydrophobicity from silane-based solution containing nanoparticles. Applied Surface Science. 2017. Vol. 397, pp. 87–94. https://doi.org/10.1016/j.apsusc.2016.11.099
67. Li X., Li H., Huang K., Zou H., Yu D., Li Y., Qiu B., Wang X. Durable superamphiphobic nano-silica/epoxy composite coating via coaxial electrospraying method. Applied Surface Science. 2018. Vol. 436, pp. 283–292. https://doi.org/10.1016/j.apsusc.2017.11.241
68. Jouyandeh M., Moini Jazani O., H. Navarchian A., Shabanian M., Vahabi H., Reza Saeb M. Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation. Applied Surface Science. 2018. Vol. 447, pp. 152–164. https://doi.org/10.1016/j.apsusc.2018.03.197
69. George V. Belessiotis, Kyriaki G. Papadokostaki, Evangelos P. Favvas, Eleni K. Efthimiadou, Sotirios Karellas. Preparation and investigation of distinct and shape stable paraffin/SiO2 composite PCM nanospheres. Energy Conversion and Management. 2018. Vol. 168, pp. 382–394. https://doi.org/10.1016/j.enconman.2018.04.059
70. Perez G., Erkizia E., Gaitero J.J., Kaltzakorta I., Jimenez I., Guerrero A. Synthesis and characterization of epoxy encapsulating silica microcapsules and amine functionalized silica nanoparticles for development of an innovative self-healing concrete. Materials Chemistry and Physics. 2015. Vol. 165, pp. 39–48. https://doi.org/10.1016/j.matchemphys.2015.08.047
71. Khamsehashari N., Hassanzadeh-Tabrizi S.A., Bigham A. Effects of strontium adding on the drug delivery behavior of silica nanoparticles synthesized by P123-assisted sol-gel method. Materials Chemistry and Physics. 2018. Vol. 205, pp. 283–291. https://doi.org/10.1016/j.matchemphys.2017.11.034
72. Prasad T., Halder S., Siddhartha S. Dhar. Imidazole-supported silica one-pot processed nanoparticles to enhance toughness of epoxy based nanocomposites. Materials Chemistry and Physics. 2019. Vol. 231, pp. 75–86. https://doi.org/10.1016/j.matchemphys.2019.04.002
73. Lee S.J., Kawashima S., Kim K.J., Woo S.K., Won J.P. Interfacial properties of nanosilica-treated structural polymer fibres in cement matrix composites. Composite Structures. 2018. Vol. 202, pp. 465–472. https://doi.org/10.1016/j.compstruct.2018.02.068
74. Kumar D., Wu X., Fu Q., Weng Chye Ho J., D. Kanhere P., Li L., Chen Z. Hydrophobic sol-gel coatings based on polydimethylsiloxane for self-cleaning applications. Materials and Design. 2015. Vol. 86, pp. 855–862. https://doi.org/10.1016/j.matdes.2015.07.174
75. Palza H., Vergara R., Zapata P. Composites of polypropylene melt blended with synthesized silica nanoparticles. Composites Science and Technology. 2011. Vol. 71, pp. 535–540. https://doi.org/10.1016/j.compscitech.2011.01.002
76. Rahman I.A., Vejayakumaran P., Sipaut C.S., Ismail J., Abu Bakar M., Adnan R., Chee C.K. Effect of anion electrolytes on the formation of silica nanoparticles via the sol-gel process. Ceramics International. 2006. Vol. 32, pp. 691–699. https://doi.org/10.1016/j.ceramint.2005.05.004
77. Rahman I.A., Jafarzadeh M., Sipaut C.S. Synthesis of organo-functionalized nanosilica via a co-condensation modification using g-aminopropyltriethoxysilane (APTES). Ceramics International. 2009. Vol. 35, pp. 1883–1888. 10.1016/j.ceramint.2008.10.028
78. Jeevajothi K., Crossiya D., Subasri R. Non-fluorinated, room temperature curable hydrophobic coatings by sol-gel process. Ceramics International. 2012. Vol. 38, pp. 2971–2976. https://doi.org/10.1016/j.ceramint.2011.11.075
79. Jeevajothi K., Subasri R., SomaRaju K.R.C. Transparent, non-fluorinated, hydrophobic silica coatings with improved mechanical properties. Ceramics International. 2013. Vol. 39, pp. 2111–2116. https://doi.org/10.1016/j.ceramint.2012.07.019
80. Sheeraz Che Zulkifli N., Ab Rahman I., Mohamad D., Husein A. A green sol-gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceramics International. 2013. Vol. 39, pp. 4559–4567. https://doi.org/10.1016/j.ceramint.2012.11.052
81. Noushad M., Ab Rahman I., Sheeraz Che Zulkifli N., Husein A., Mohamad D. Low surface area nanosilica from an agricultural biomass for fabrication of dental. Ceramics International. 2014. Vol. 40, pp. 4163–4171. https://doi.org/10.1016/j.ceramint.2013.08.073
82. Cao G. Nanostructures and nanomaterials: synthesis, properties and applications. London: Imperial College Press. 2004. 112 p.
83. Altavilla C., Ciliberto E. Inorganic Nanoparticles: synthesis, applications and perspectives. London: Boca Raton, CRC. 2010, pp. 547–558.
84. Tjong S. C., Chen H. Nanocrystalline materials and coatings. Materials Science and Engineering: R: Reports. 2004. Vol. 45. N 1–2, pp. 1–88. https://doi.org/10.1016/j.mser.2004.07.001
85. Hosono H., Mishima Y., Takezoe H., MacKenzie K.J.D. Nanomaterials: research towards applications. Great Britain: Elsevier Sci. Publ. 2006. 488  p.
86. Teipel U. Energetic Materials. Particle processing and characterization. Weinheim: WileyVCH. 2005, pp. 7–27, 203–226, 450–457, 509–528.
87. Singh M. R., Lipson R. H. Transport and optical properties of nanomaterials. Proc. of the Intern. Conf. Ser: AIP Conf. Proc./ Mater. Phys. and Appl. Ser. 2009, p. 1147.
88. Bréchignac C., Houdy P., Lahmani M. Nanomaterials and nanochemistry. Berlin; Heidelberg: Springer-Verl. 2008. 123 p.
89. Rao C. N. R., Müller A., Cheetham A. K. Nanomaterials chemistry: recent developments and new directions. Weinheim: Wiley-VCH Verlag, GmbH and Co., KGaA, 2007.
90. Capek I. Nanocomposite Structures and Dispersions. Amsterdam: Elsevier. 2006. 312 p.
91. Rao C. N. R., Müller A., Cheetham K. The chemistry of nanomaterials: synthesis, properties and applications. Weinheim: Wiley-VCH Verlag, GmbH and Co., KGaA. 2004.
92. Edelstein A.S., Cammaratra R.C. Nanomaterials: synthesis, properties and applications. 2nd Ed. Great Britain: Taylor and Francis. 1998.
93. Geckeler K.E., Nishide H. Advanced nanomaterials. Weinheim: Wiley-VCH Verlag, GmbH and Co., KGaA. 2010.
94. Schwartz M. New materials, processes, and methods technology. Boca Raton, Florida: CRC Press, Taylor and Francis. 2005.
95. Ping L.J., Fullerton E., Gutfleisch O., Sellmyer D.J. Nano scale magnetic materials and applications. New York: Springer Publ. 2009.
96. Reithmaier J., Petkov P., Kulisch W., Popov C. Nanostructured Materials for Advanced Technological Applications (NATO Science for Peace and Security Series B: Physics and Biophysics). Dordrecht, Netherlands: Springer Publ. 2009. 562 p.
97. Hassan A.F., Alafid F., Hrdina R. Preparation of melamine formaldehyde/nanozeolite Y composite based on nanosilica extracted from rice husks by sol-gel method: adsorption of lead (II) ion. Journal of Sol-Gel Science and Technology. 2020. Vol. 95. No. 1, pp. 211–222. https://doi.org/10.1007/s10971-020-05295-y
98. Indrasti N. S., Ismayana A., Maddu A., Utomo S.S. Synthesis of nano-silica from boiler ash in the sugar cane industry using the precipitation method. Synthesis. 2020. Vol. 11. No. 2. DOI: https://doi.org/10.14716/ijtech.v11i2.1741
99. Potapov V., Fediuk R., Gorev D. Obtaining sols, gels and mesoporous nanopowders of hydrothermal nanosilica. Journal of Sol-Gel Science and Technology. 2020. Vol. 94, pp. 1–14. https://doi.org/10.1007/s10971-020-05216-z
100. Meng L., Zhu H., Feng B., Gao B., Wang D., Wei S. Embedded polyhedral SiO2/castor oil-based WPU shell-core hybrid coating via self-assembly sol-gel process. Progress in Organic Coatings. 2020. Vol. 141. 105540. https://doi.org/10.1016/j.porgcoat.2020.105540
101. Imoisili P.E., Ukoba K.O., Jen T.C. Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol-gel. Journal of Materials Research and Technology. 2020. Vol. 9. No. 1, pp. 307–313. https://doi.org/10.1016/j.jmrt.2019.10.059
102. Tangsee S., Lashari N. U. R. Facile synthesis of nano silica-based coating on API5L-x80 steel to achieve ultra non-wetting surface and its corrosion resistance. Applied Nanoscience. 2020. Vol. 10. No. 11, pp. 4103–4113. https://doi.org/10.1007/s13204-020-01522-8
103. Gnoatto J. A. João Vitor de O., Eduarda A., Faccio Busatto F., P. Moreno Ruiz Y., Cristina Borba da Cunha A., Jaqueline Moura D., Henrique Zimnoch dos Santos J. Hybrid nanosilicas produced by the Stöber sol-gel process: In vitro evaluation in MRC-5 cells. Journal of Non-Crystalline Solids. 2020. Vol. 542. 120152. https://doi.org/10.1016/j.jnoncrysol.2020.120152
104. Boukarroum R. H. Sol-Gel synthesis of silica nanoparticles and their role in predicting cement mortar strength at early ages: dis. Notre Dame University-Louaize, 2020.
105. Xu E., Zhang Y., Lin L. Improvement of mechanical, hydrophobicity and thermal properties of Chinese fir wood by impregnation of nano silica sol. Polymers. 2020. Vol. 12. No. 8. 1632. DOI: 10.3390/polym12081632
106. Azzahra A. N., Yusefin E.S., Salima G., Mudita M.M.W.M., Febriani N.A., Nandyianto A.B.D. Synthesis of nanosilica materials from various sources using various methods. Journal of Applied Science and Environmental Studies. 2020. Vol. 3. No. 4, pp. 254–278.
107. Al-Abboodi S.M.T., Al-Shaibani E.J.A., Alrubai E.A. Preparation and characterization of nano silica prepared by different precipitation methods. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2020. Vol. 978. No. 1. 012031. DOI 10.1088/1757-899X/978/1/012031
108. Kodippili D. Sol-gel derived nano-silica suspensions for inclusion in cement paste: dis. Concordia University, 2020.
109. Ma Y., He H., Huang B., Jing H., Zhao Z. In situ fabrication of wood flour/nano silica hybrid and its application in polypropylene-based wood-plastic composites. Polymer Composites. 2020. Vol. 41. No. 2, pp. 573–584. https://doi.org/10.1002/pc.25389
110. El-Naggar M. E., Abdelsalam, N.R.; Fouda, M.M.G.; Mackled, M.I.; Al-Jaddadi, M.A.M.; Ali, H.M.; Siddiqui, M.H.; Kandil, E.E. Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials. 2020. Vol. 10. No. 4. 739. DOI: 10.3390/nano10040739
111. Almira K. G., Susanto B. H., Ismail A. Synthesize hydrophobic nanomaterial from sodium silicate by sol-gel method combined with hot injection method. AIP Conference Proceedings. 2020. Vol. 2255. No. 1. 060024. https://doi.org/10.1063/5.0014325
112. Sun Q., Wang Y., Huang l., Lu P., Wang X., Zhang Z., Wang Y., Tang J., A. Belfiore L. Enhanced NIR-fluorescent properties of Tm3+ complex combined with nano silica. Inorganic Chemistry Communications. 2020. Vol. 120. 108172. DOI: 10.3390/nano10101964
113. Zarandi P. K., Madani A, Bagheri H, Moslemion M. The effect of sandblasting and coating of zirconia by nano composites on bond strength of zirconia to resin cements. Journal of Dentistry. 2020. Vol. 21. No. 1. DOI: 10.30476/DENTJODS.2019.77789.0
114. El-Didamony H., El-Fadaly E., A. Amer A., H. Abazeed I. Synthesis and characterization of low cost nanosilica from sodium silicate solution and their applications in ceramic engobes. Boletín de la Sociedad Española de Cerámica y Vidrio. 2020. Vol. 59. No. 1, pp. 31–43. https://doi.org/10.1016/j.bsecv.2019.06.004
115. Chainaruprasert R., Pongprayoon T. Synthesis of biogenic nanosilica from rice husk: using scaling-up batch reactor from laboratory. Key Engineering Materials. 2020. Vol. 856, pp. 198–204. https://doi.org/10.4028/www.scientific.net/KEM.856.198
116. Kooshafar M., Madani H. An investigation on the influence of nano silica morphology on the characteristics of cement composites. Journal of Building Engineering. 2020. Vol. 30. 101293. https://doi.org/10.1016/j.jobe.2020.101293
117. Meng L., Qiu H., Wang D., Feng B., Di M., Shi J., Wei S. Castor-oil-based waterborne acrylate/SiO2 hybrid coatings prepared via sol-gel and thiol-ene reactions. Progress in Organic Coatings. 2020. Vol. 140. 105492. https://doi.org/10.1016/j.porgcoat.2019.105492
118. Beirami K., Baghshahi S., Ardestani M., Ardestani M. Synthesis and characterization of hydrophobic nano-silica thin coatings for outdoor insulators. Processing and Application of Ceramics. 2020. Vol. 14. No. 1, pp. 40–46. DOI: 10.2298/PAC2001040B
119. Mohd Daud F. D., Nur Aishah M. Azmy, Mudrikah S.M., Norshahida S., Hafizah Hanim M. Zaki. Preparation of nanosilica powder using rice husk via precipitation method. Materials Science Forum. 2020. Vol. 1010, pp. 501–507. https://doi.org/10.4028/www.scientific.net/MSF.1010.501
120. Heiman-Burstein D., Dotan A., Dodiuk H., Kenig S. Hybrid sol-gel superhydrophobic coatings based on alkyl silane-modified nanosilica. Polymers. 2021. Vol. 13. No. 4. 539. https://doi.org/10.3390/polym13040539
121. Kadhim R.A., Mohammed A.A. K., Hussein H.M. Synthesis and preparation of Nano-silica particles from Iraqi western region silica sand via SOL-GEL method. Journal of Physics: Conference Series. IOP Publishing. 2021. Vol. 1973. No. 1. 012071. DOI 10.1088/1742-6596/1973/1/012071
122. Sarkar J., Deepanjan M., Joy S., Jonathan T.O., Bhuman G., Dipankar C., Tarit R., Krishnendu A. Synthesis of nanosilica from agricultural wastes and its multifaceted applications: A review. Biocatalysis and Agricultural Biotechnology. 2021. Vol. 37. 102175. https://doi.org/10.1016/j.bcab.2021.102175
123. Owoeye S.S., Abegunde S.M., Oji B. Effects of process variable on synthesis and characterization of amorphous silica nanoparticles using sodium silicate solutions as precursor by sol-gel method. Nano-Structures & Nano-Objects. 2021. Vol. 25. 100625. https://doi.org/10.1016/j.nanoso.2020.100625
124. Kamasamudram K.S., Ashraf W., Landis E. N. Cellulose nanofibrils with and without nanosilica for the performance enhancement of Portland cement systems. Construction and Building Materials. 2021. Vol. 285. 121547. https://doi.org/10.1016/j.conbuildmat.2020.121547
125. Nair P. A. K., Vasconcelos W.L., Paine K., Calabria-Holley J. A review on applications of sol-gel science in cement. Construction and Building Materials. 2021. Vol. 291. 123065. https://doi.org/10.1016/j.conbuildmat.2021.123065
126. Behnia B., Safardoust-Hojaghan H., Amiri O., Salavati-Niasari M., Aali Anvari A. High-performance cement mortars-based composites with colloidal nano-silica: Synthesis, characterization and mechanical properties. Arabian Journal of Chemistry. 2021. Vol. 14. No. 9. 103338. https://doi.org/10.1016/j.arabjc.2021.103338
127. Mujiyanti D. R., Trisno Santoso U., Dwi Saptarini M., Heirani Emi N. Synthesis and characterization nanosilica from rice husk ash using sol-gel method with addition of PEG-6000 and PVA. JKPK (Jurnal Kimia dan Pendidikan Kimia). 2021. Vol. 6. No. 3, pp. 252–263. https://repo-dosen.ulm.ac.id//handle/123456789/23200
128. Aziz T., Mehmood, S., Haq, F., Ullah, R., Khan, F. U.,Ullah, B., Raheel, M., Iqbal, M., Ullah, A. Synthesis and modification of silica-based epoxy nanocomposites with different sol-gel process enhanced thermal and mechanical properties. Journal of Applied Polymer Science. 2021. Vol. 138 (40). 51191.
129. Santos L., Taleghani A. D., Li G. Nanosilica-treated shape memory polymer fibers to strengthen wellbore cement. Journal of Petroleum Science and Engineering. 2021. Vol. 196, pp. 107646. https://doi.org/10.1016/j.petrol.2020.107646
130. Jyoti A., Kr Singh R., Kumar N., Kr Aman A., Kar M. Synthesis and properties of amorphous nanosilica from rice husk and its composites. Materials Science and Engineering: B. 2021. Vol. 263, pp. 114871. https://doi.org/10.1016/j.mseb.2020.114871
131. Setyawan N., Yuliani S. Synthesis of silica from rice husk by sol-gel method. IOP Conference Series: Earth and Environmental Science. 2021. Vol. 733. No. 1. 012149. DOI 10.1088/1755-1315/733/1/012149
132. Zuwanna I., Riza M., Aprilia S. The impact of solvent concentration on the characteristic of silica from rice husk ash using sol gel method. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2021. Vol. 1087. No. 1. 012060. DOI: 10.1088/1757-899X/1087/1/012060
133. Wan W., Mai Y., Guo D., Hou G., Dai X., Gu Y., Li S., Wu F. A novel sol-gel process to encapsulate micron silicon with a uniformly Ni-doped graphite carbon layer by coupling for use in lithium ion batteries. Synthetic Metals. 2021. Vol. 274. 116717. https://doi.org/10.1016/j.synthmet.2021.116717
134. Meda U. S., Sachin K.C. Synthesis of silicon dioxide nanoparticles by sol-gel method for application in geopolymer composites. SPAST Abstracts. 2021. Vol. 1. No. 1. https://spast.org/techrep/article/view/2626
135. Da’na E., Al-Arjan W.S., Al-Saeed S., El-Aassar M.R. One-pot synthesis of amine-functionalized nano-silica via sol-gel assisted by reverse micelle microemulsion for environmental application. Nanomaterials. 2022. Vol. 12. No. 6. 947. DOI: 10.3390/nano12060947
136. Singh G., Arora H., Hariprasad P., Sharma S. Development of clove oil based nanoencapsulated biopesticide employing mesoporous nanosilica synthesized from paddy straw via bioinspired sol-gel route. Environmental Research. 2023. 115208. https://doi.org/10.1016/j.envres.2022.115208
137. Gautam K. D., Ullas A. V. Effect of stirring speed on the morphology of nanosilica by sol-gel method. Materials Today: Proceedings. 2022. https://doi.org/10.1016/j.matpr.2022.10.281
138. Moradi H.. Atashi P., Amelirad O., Yang J.-K., Chang Y.-Y., Kamranifard T. Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stöber method. Advances in nano research. 2022. Vol. 12. No. 4, pp. 387–403. DOI: 10.12989/anr.2022.12.4.387
139. Toyofuji A., Hano N., Yamaguchi Y., Wakiya T., Ihara H., Takafuji M. Preparation of hybrid microspheres with homogeneously dispersed nanosilica using in-situ sol-gel reaction inside a polystyrene matrix. Chemistry Letters. 2022. Vol. 51. No. 6, pp. 639–642. https://doi.org/10.1246/cl.220121

Для цитирования: Строкова В.В., Нелюбова В.В., Кузьмин Е.О. Рыльцова И.Г., Губарева Е.Н., Баскаков П.С. Технологии золь-гель синтеза нанокремнезема как модификатора материалов на основе цемента. Форсайт-анализ // Строительные материалы. 2023. № 3. С. 43–72. DOI: https://doi.org/10.31659/0585-430X-2023-811-3-43-72


Печать   E-mail