Examples of the Application of the Coherence Function in the Tasks of Inspection of Stone Structures

Number of journal: 5-2023
Autors:

Bakusov P.A.

DOI: https://doi.org/10.31659/0585-430X-2023-813-5-66-71
УДК: 624.012.2

 

AbstractAbout AuthorsReferences
During the survey and work on the reconstruction and restoration of buildings and structures, questions often arise regarding the assessment of the connectivity of elements of stone structures. For example, at the moment there are no reasonable methods for assessing the quality of work to strengthen stone structures that have obvious damage. In addition, questions often arise about the connection between the embedded openings and the main mass of the stone wall. To solve these problems, it is proposed to use an estimate of the coherence function, which is based on the vibration records of the stone structures under study. The seismic background is considered as a dynamic load. The proposed methods can be considered as methods of non-destructive testing, since they require minimal physical impact on the structures under study. The article provides a brief description of the coherence function, the construction of its estimate, as well as the measuring equipment used. As examples of the application of this assessment, the results of processing measurements of two cracks before and after reinforcement work, as well as two embedded openings, are given. Since the methods described in the article are at the stage of development and research, unresolved issues are presented at the moment. In addition, the limitations that arise during measurements and the limits of applicability of the proposed method are listed.
P.A. BAKUSOV1,2, Engineer, Assistant of the Department of Information Technologies (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Saint Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeiskaya Street, Saint Petersburg, 190005, Russian Federation)
2 «Georeconstruction» ISP OOO (office 414, 4, Izmaylovskiy Avenue, Saint Petersburg, 190005, Russian Federation)

1. Bendat J., Piersol A. Izmerenie i analiz sluchajnyh processov [Measurement and analysis of random processes]. Moscow: Mir. 1974. 463 p.
2. Bendat J., Piersol A. Primeneniya korrelyatsionnogo i spektral’no analiza [Engineering applications of correlation and spectral analysis]. Moscow: Mir, 1983. 310 p.
3. Jenkins G., Watts D. Spektral’nyj analiz i ego prilozheniya [Digital spectral analysis and its applications]. Vol. 2. Moscow: Mir. 1972. 287 p.
4. Marple Jr.S.L. Tsifrovoi spektral’nyi analiz i ego prilozheniya [Digital spectral analysis]. Moscow: Mir. 1990. 584 p.
5. Otnes R., Enochson L. Prikladnoi analiz vremennykh ryadov [Applied time series analysis]. Moscow: Mir. 1982. 428 p.
6. Randall R.B. Chastotnyj analiz [Frequency analysis]. Kopengagen: Bryul’ i K”er, 1989. 389 p.
7. Ovcharuk V.N. Spectral analysis of signals acoustic emission. Uchenye zametki TOGU. 2013. Vol. 4, No. 4, pp. 974–986. (In Russian).
8. Bartlett M.S. Smoothing periodograms from time-series with continuous spectra. Nature. 1948. Vol. 161, pp. 686–687. DOI: https://doi.org/10.1038/161686a0
9. Bartlett M.S. Periodogram analysis and continuous spectra. Biometrika. 1950. Vol. 37. No. 1/2, pp. 1–16. DOI: https://doi.org/10.2307/2332141
10. Bartlett M.S. Vvedenie v teoriyu sluchainykh protsessov [An Introduction to stochastic processes with special reference to methods and applications]. Moscow: IL. 1958. 384 p.
11. Derkach V.N., Bakusov P.A., Orlovich R.B. Evaluation of the effectiveness of injection and repair of damaged masonry. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 55–61. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-55-61
12. Patitz G. Bestandserfassung mit Bauradar – ein zerstörungsfreies Verfahren für die Praxis. Mauerwerk. 2013. Vol. 17. Iss. 4, pp. 196–200. DOI: https://doi.org/10.1002/ dama.201300579
13. Wiggenhauser H., Behrens M., Mouser D., Moryson R.M., Pudovikov S., Herrmann H-G. Non-destructive assessment of retaining wall of former coal mine plant. Mauerwerk. 2018. Vol. 22. Iss. 3, pp. 175–186. DOI: https://doi.org/10.1002/dama.201700021
14. Kwiecien A., Chelmecki J., Matysek P. Non-destructive test of brick columns using change in frequency and inertancy response. Structural Analysis of Historical Constructions. 2012, pp. 2437–2444.
15. Zavalishin S.I., Shablinskii G.E., Zubkov D.A., Rumyantsev A.A. Dinamiceskii monitoring zdanii i sooruzhenii dlya kontrolya ikh seismostoikosti [Dynamic monitoring of buildings and structures to control their seismic stability]. Predotvrashchenie avarii zdanii i sooruzhenii. 2009. No. 2 (2), pp. 1–12. (In Russian).
16. Gentile C., Saisi A., Cabboi A. Dynamic monitoring of a Masonry tower. Structural Analysis of Historical Constructions. 2012, pp. 2390–2397.
17. Elyamani A., Caselles J.O., Clapes J., Roca P. Assessment of dynamic behavior of Mallorca cathedral. Structural Analysis of Historical Constructions. 2012, pp. 2376–2384.
18. Grosel J., Sawicki W., Wojcicki Z. Vibration measurements in analysis of historical structures. Structural Analysis of Historical Constructions. 2012, pp. 2398–2411.

For citation: Bakusov P.A. Examples of the application of the coherence function in the tasks of inspection of stone structures. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 66–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-66-71


Print   Email