Physical-Technical Properties of Fiber Concretes Using Recycled Mineral Wool Raw Materials

Number of journal: 7-2019
Autors:

Demyanenko O.V.
Kopanitsa N.O.
Sorokina E.A.
Nichinsky A.N.

DOI: https://doi.org/10.31659/0585-430X-2019-772-7-16-20
УДК: 691.328

 

AbstractAbout AuthorsReferences
A promising building material for bearing structures of buildings and structures is disperse-reinforced concretes (fiber concrete), having improved deformation characteristics, increased dynamic strength and lowered crack resistance. There are studies on the operation characteristics of disperse-reinforced concretes, where metal wire, glass fiber, polymer and basalt fibers were used as fiber. The possibility of using secondary raw materials as a fiber in the form of waste of mineral wool heat insulator based on basalt rocks remains understudied. The results of the studies conducted by the authors to assess the effect of fiber (BF) from waste of mineral wool insulator on the physical and mechanical properties of heavy fine concrete showed that the introduction of basalt fiber from secondary mineral wool raw materials into the concrete mixture in an amount of 1% of the cement mass makes it possibleto increase the bending strength by 34%, at the same time, there was a slight increase in the compressive strength by 10%, compared with the control samples. The results of the study of the microstructure of cement stone showed that in the samples reinforced with fiber from secondary mineral wool, a homogeneous, dense contact zone at the fiber/matrix boundary is formed due to the uniform distribution of the fiber in the volume of concrete. The field of application of secondary mineral wool raw material as a reinforcing additive when producing concrete structures subjected to dynamic loads is substantiated.
O.V. DEMYANENKO, Research Teacher (This email address is being protected from spambots. You need JavaScript enabled to view it.)
N.O. KOPANITSA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.A. SOROKINA, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.N. NICHINSKY, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Tomsk State University of Architecture and Building (2, Solyanaya Square, 634003, Tomsk, Russian Federation)

1. Копаница Н.О., Саркисов Ю.С., Демьяненко О.В. Применение нанодисперсного кремнезема в производстве строительных смесей // Вестник Томского государственного архитектурно-строительного университета. 2016. № 5 (58). С. 140–150.
1. Kopanitsa N.O., Sarkisov Yu.S., Dem’yanenko O.V. Use of nanodisperse silicon dioxide in production of construction mixes. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2016. No. 5 (58), pp. 140–150. (In Russian).
2. Космачев П.В., Демьяненко О.В., Копаница Н.О., Скрипникова Н.К., Власов В.А. Композиционные материалы на основе цемента с нанодисперсным диоксидом кремния // Вестник Томского государственного архитектурно-строительного университета. 2017. № 4 (63). С. 139–146.
2. Kosmachev P.V., Dem’yanenko O.V., Kopanitsa N.O., Skripnikova N.K., Vlasov V.A. Composite materials on the basis of cement with nanodisperse dioxide of silicon. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2017. No. 4 (63), pp. 139–146. (In Russian).
3. Abu-Obaida A., El-Ariss B., El-Maaddawy T. Behavior of short-span concrete members internally reinforced with glass fiber-reinforced polymer bars. Journal of Composites for Construction. Vol. 22. Iss. 5 (October 2018) https://doi.org/10.1061/(ASCE) CC.1943-5614.0000877
4. Demyanenko O.V., Kopanitsa N.O., Sarkisov Y.S., Abzaev Y.A., Ikonnikova K.V., Ikonnikova L.F. Quantitative phase analysis of modified hardened cement paste. IOP Conference Series: Earth and Environmental Science. 2017. Vol. 8. Iss. 9. DOI: https:// doi.org/10.1088/1755-1315/87/9/092008
5. Ionov V.V., Larionov S.A., Sarkisov Y.S., Kopanica N.O., Gorchkova A.V., Gorlenko N.P., Ikonnikova K.V. Tribological properties of hydraulic fluids modified by peat-based additives. IOP Conference Series: Materials Science and Engineering. 2017. Vol. 177. Iss. 1. DOI: https://doi. org/10.1088/1757-899X/177/1/012108
6. Shin H.O., Lee S.J., Yoo D.Y. Bond behavior ofpretensioned strand embedded in ultra-highperformance fiber-reinforced concrete. International Journal of Concrete Structures and Materials. 2018. No. 12 (1), pp. 1–13 DOI:https://doi.org/10.1186/s40069-018-0249-4
7. Каспер Е.А., Бочкарева О.С. Мелкозернистые бетоны, дисперсно-армированные базальтовой фиброй // Системы. Методы. Технологии. 2015.№ 1 (25). С. 135–138.
7. Kasper E.A., Bochkareva O.S. The fine-grained concrete reinforced by a disperse basalt fiber. Sistemy. Metody. Tekhnologii. 2015. No. 1 (25), pp. 135–138. (In Russian).
8. Xie J., Fang Ch., Lu Zh. Effects of the addition of silica fume and rubber particles on the compressive behavior of recycled aggregate concrete with steel fibers. Journal of Cleaner Production. 2018. Vol. 197. Part 1, pp. 656–667 https://doi.org/10.1016/j.jclepro.2018.06.237
9. Ferrara L., Park Y.D., Shah Surendra P. A method for mix-design of fiber-reinforced self-compacting concrete. Cement and concrete research. 2007. Vol. 37. Iss. 6, pp. 957–971. https://doi.org/10.1016/j.cemconres.2007.03.014
10. Rybin V.A., Utkin А.V., Baklanova N.I. Corrosion of uncoated and oxide-coated basalt fibre in different alkaline media. Corrosion Science. 2016. Vol. 102, pp. 503–509. https://doi.org/10.1016/j.corsci.2015. 11.004
11. Bicer K., Yalciner H., Balks A. P. Effect of corrosion on flexural strength of reinforced concrete beams with polypropylene fibers. Construction and building materials. 2018. No. 185, pp. 574–588. https://doi.org/10.1016/j.conbuildmat.2018.07.021
12. Рыбин В.А. Физико-химическое исследование базальтового волокна с защитными щелочестойкими покрытиями. Дис. … канд. хим. наук. Новосибирск. 20166. 143 с.
12. Rybin V.A. Physicochemical investigation of basaltic fibre with а protective alkaline steady coating. Diss… Candidate of Science (Engineering). Novosibirsk. 2016. 143 p. (In Russian).
13. Demyanenko O., Sorokina E., Kopanitsa N., Sarkisov Y. Mortars for 3D printing. MATEC Web of Conferences. Vol. 143. 2018. DOI: https://doi.org/10.1051/matecconf/201714302013
14. Gorlenko N.P., Sarkisov Yu.S., Kopanitsa N.O., Sorokina E.A., Gorynin G.L., Nihinskiy A.N. Finegrained concrete fibre-reinforced by secondary mineral wool raw material. Journal of Physics: Conference Series. Vol. 1118. Conference 1. DOI: https://doi.org/ 10.1088/1742-6596/1118/1/012059
15. Kwan A.K.H., Li L.G. Combined effects of water film thickness and paste film thickness on rheology of mortar. Materials and Structures. 2012. Vol. 45, pp. 1359–1374. DOI: https://doi.org/10.1617/s11527-012-9837-y
16. Chen J.J., Kwan A.K.H. Superfine cement for improving packing density, rheology and strength of cement paste. Cement & Concrete Composites. 2012. Vol. 34. No. 1, pp. 1–10. DOI:https://doi.org/10.1016/j.cemconcomp. 2011.09.006
17. Wong V., Chan K.W., Kwan A.K.H. Applying theories of particle packing and rheology to concrete for sustainable development. Organization, technology & management in construction: an international journal. 2013. Vol. 5. No. 2, pp. 844–851. DOI: https://doi.org/10.5592/otmcj.2013.2.3
18. Dang C.N., Murray C.D., Floyd R.W., Hale W.M., & Martí-Vargas J.R. A correlation of strand surface quality to transfer length. ACI Structural Journal. 2014.No. 111 (5), pp. 1245–1252.

For citation: Demyanenko O.V., Kopanitsa N.O., Sorokina E.A., Nichinsky A.N. Physical-technical properties of fiber concretes using recycled mineral wool raw materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 7, pp. 16–20. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-772-7-16-20


Print   Email