Evaluation of Temperature of Road Surface during Construction

Number of journal: 11-2015
Autors:

Sinitsyn N.N.
Makonkov A.V.

DOI: https://doi.org/10.31659/0585-430X-2015-731-11-38-41
УДК: 536.24

 

AbstractAbout AuthorsReferences
The process of cooling of road pavement of hot asphalt concrete mixes at construction of highways is considered. The article presents the description of a mathematical model of calculation of temperature fields of pavement. The mathematical model contains the one-dimensional non-stationary heat conduction equations for each layer. Boundary conditions on the surface of the top layer take into account the heat transfer by convection and radiation. The boundary conditions of the fourth kind are between the layers. The temperature boundaries of the lower layer are constant. Testing the model is performed for limited and semi-infinite rods. The article presents the results of testing the mathematical model. The numerical solution of heat conduction equations held by the implicit scheme. In article the method for calculating the temperature of paving surface is offered. The calculated values of the temperature of paving depending on the speed of a wind, solar radiation, thickness of a coat layer, a difference of thickness of a layer of hot asphalt concrete and reference temperature of a layer are presented. It is established that under identical conditions the porosity of material of the layer has the greatest impact on the change in temperature.
N.N. SINITSYN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.V. MAKONKOV, Engineer

Cherepovets State University (5 Lunacharskogo Avenue, 162600, Cherepovets, Russian Federation)

1. Nikolenko M.A., Besschetnov B.V. The increase in long-term cracking resistance of asphalt pavements. Inzhenernyi vestnik Dona. 2012. Vol. 20. Is. 2, pp. 665–670. (In Russian).
2. Zubkov A.F.. About a non-stationary heat transfer in processes of construction of road surfaces non-rigid type. Vestnik TGTU. 2007. Vol. 13. No. 2b, pp. 589–597 (In Russian).
3. Kudinov V.V., Kartashov E.M., Kalashnikov V.V. Analytical solutions of problems of heat and mass transfer and thermoelasticity for multilayered constructions [Analytical problem solving heat and mass transfer and thermoelasticity for multilayer designs]. Moscow: Vysshaya shkola. 2005. 430 p.
4. Belitsky V.D., Katunin A.V. Analysis of the condition of the road asphalt pavement by means of thermodynamics. Omskiy nauchnyy vestnik. 2014. Vol. 1 (127), pp. 93–95. (In Russian).
5. Iliopolov S.K., Cherskov R.M., Mardirosova I.V. Increase of thermal resistance of asphalt concrete by use rubber-polymer additives. Vestnik Khar’kovskogo natsional’nogo avtomobil’no-dorоzhnogo universiteta. 2006. Vol. 34–35. http://cyberleninka.ru/article/n/povyshenie-temperaturnoy-stoykosti-asfaltobetonov-putem-ispolzovaniya-rezino-polimernoy-dobavki (date of access 21.07.2015).
6. Hristoforova A.A, Gogolev I.N., Fillipov S.E. Development of rigid coverings of career roads with the use of activated rubber crumb. Inzhenernyi vestnik Dona. 2011. Vol. 18. Iss. 4, pp. 347–350. (In Russian).
7. Makonkov A.V., Kuzmina A.L., Belozor M.Yu. Research use of prospects of use granulated asphalt concrete mixture, received hot regeneration method. Vestnik Cherepovetskogo gosudarstvennogo universiteta. 2014. Vol. 2 (55), pp. 13–15. (In Russian).

For citation: Sinitsyn N.N., Makonkov A.V. Evaluation of Temperature of Road Surface during Construction. Stroitel’nye Materialy [Construction Materials]. 2015. No. 11, pp. 00-00. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-731-11-38-41


Print   Email