AbstractAbout AuthorsReferences
The current economic situation and increased attention to environmental protection encourage manufacturers of building materials, in particular ceramic bricks, to look for alternative types of raw materials that make it possible to reduce its cost with good quality of finished products. Mining waste is especially promising, among which peridotites stand out, which have huge reserves and are practically not used. The purpose of the work is to obtain building ceramics with the addition of peridotite and study its mechanical properties.The chemical and mineralogical compositions of raw materials have been determined. Silicon and aluminum oxides account for 78.5% in clay and 61% in peridotites.The latter are characterized by a high content of calcium, magnesium and iron oxides (34.65%). Clay is composed of clay minerals, as well as quartz and feldspar. Tremolite, enstatite and olivine are present in peridotites. The dependence of the mechanical strength of ceramic samples on their firing temperature, the content of the additive and the degree of its grinding has been established. The optimal amount of peridotite is 10%, at which the compressive strength has the maximum value over the entire grinding range of the additive. With an increase in the firing temperature to 1050оC, a slow increase in the strength of the samples occurs. At 1100оC, there is a sharp jump in strength parameters, which increase by 3.6–4.7 times, depending on the granulometric composition of the additive.The main properties of the obtained ceramics were determined. It has been established that peridotites are a promising additive for the production of ordinary bricks with a compressive strength of up to 60 MPa and an average density of up to 2400 kg/m3.
L.I. KHUDYAKOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.Yu. KOTOVA, Candidate of Sciences (Chemistry),
N.M. GARKUSHEVA, Candidate of Sciences (Biology) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.L. PALEEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
I.Yu. KOTOVA, Candidate of Sciences (Chemistry),
N.M. GARKUSHEVA, Candidate of Sciences (Biology) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.L. PALEEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences (6, Sakhyanovoy Street, Ulan-Ude, 670047, Russian Federation)
1. El Machi A., Hakkou R. Implementation of circular economy between mining and construction sectors: a promising route to achieve sustainable development goals. Sustainable Structures and Buildings. 2024. https://doi.org/10.1007/978-3-031-46688-5_4
2. Cobîrzan N., Muntean R., Thalmaier G., Felseghi R.-A.Recycling of mining waste in the production of masonry units. Materials. 2022. Vol. 15. 594. https://doi.org/10.3390/ma15020594
3. Murmu A.L., Patel A. Towards sustainable bricks production: an overview. Construction and Building Materials. 2018. Vol. 165, pp. 112–125. https://doi.org/10.1016/j.conbuildmat.2018.01.038
4. Болдырев Г.В., Стороженко Г.И., Чернейкин М.А. Особенности сырьевой базы Кузбасса для производства керамического кирпича // Строительные материалы. 2022. № 8. С. 18–22. https://doi.org/10.31659/0585-430X-2022-805-8-18-22
4. Boldyrev G.V., Storozhenko G.I., Cherneykin M.A. Features of the raw material base of Kuzbass for the production of ceramic bricks. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 18–22. (In Russian). https://doi.org/10.31659/0585-430X-2022-805-8-18-22
5. Li R., Zhou Y., Li C., Li S., Huang Z. Recycling of industrial waste iron tailings in porous bricks with low thermal conductivity. Construction and Building Materials. 2019. Vol. 213, pp. 43–50. https://doi.org/10.1016/j.conbuildmat.2019.04.040
6. da Silva F.L., Araújo F.G.S., Teixeira M.P., Gomes R.C., von Krüger F.L. Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic. Ceramics International. 2014. Vol. 40. No. 10, pp. 16085–16089. https://doi.org/10.1016/j.ceramint.2014.07.145
7. Suvorova O.V., Selivanova E.A., Mikhailova J.A., Masloboev V.A., Makarov D.V. Ceramic products from mining and metallurgical waste. Applied Sciences. 2020. Vol. 10. 3515. https://doi.org/10.3390/app10103515
8. Wei Z. Zhao J., Wang W., Yang Y., Zhuang S., Lu T., Hou Z. Utilizing gold mine tailings to produce sintered bricks. Construction and Building Materials. 2021. Vol. 282. 122655. https://doi.org/10.1016/j.conbuildmat.2021.122655
9. Guan H., Zhang B., Yang J., Zhan X., Feng P. Effect of iron content on high strength and environmentally friendly water-permeable bricks prepared from W-Mo tailing and iron slags. JOM. 2024. Vol. 76. No. 3, pp. 1447–1455. https://doi.org/10.1007/s11837-023-06284-6
10. Simão F.V., Chambart H., Vandemeulebroeke L., Nielsen P., Adrianto L.R., Pfister S., Cappuyns V. Mine waste as a sustainable resource for facing bricks . Journal of Cleaner Production. 2022. Vol. 368. 133118. https://doi.org/10.1016/j.jclepro.2022.133118
11. Li R., Yin Z., Lin H. Research status and prospects for the utilization of lead-zinc tailings as building materials. Buildings. 2023. Vol. 13. 150.
https://doi.org/10.3390/buildings13010150
12. Ettoumi M., Jouini M., Neculita C.M., Bouhlel S., Coudert L., Taha Y., Benzaazoua M. Characterization of phosphate processing sludge from Tunisian mining basin and its potential valorization in fired bricks making. Journal of Cleaner Production. 2021. Vol. 284. 124750. https://doi.org/10.1016/j.jclepro.2020.124750
13. Loutou M., Taha Y., Benzaazoua M., Daafi Y., Hakkou R. Valorization of clay by-product from Moroccan phosphate mines for the production of fired bricks. Journal of Cleaner Production. 2019. Vol. 229, pp. 169–179.
https://doi.org/10.1016/j.jclepro.2019.05.003
14. Sutcu M., Alptekin H., Erdogmus E., Er Y., Gencel O. Characteristics of fired clay bricks with waste marble powder addition as building materials. Construction and Building Materials. 2015. Vol. 82, pp. 1–8. http://dx.doi.org/10.1016/j.conbuildmat.2015.02.055
15. Ilyina V., Klimovskaya E., Bubnova T. Ceramic materials based on clay and soapstone waste: thermo-mechanical properties and application. Minerals. 2023. Vol. 13. 1376. https://doi.org/10.3390/min13111376
16. Terrones-Saeta J.M., Suárez-Macías J., Corpas-Iglesias F.A., Korobiichuk V., Shamrai V. Development of ceramic materials for the manufacture of bricks with stone cutting sludge from granite. Minerals. 2020. Vol. 10. 621. https://doi.org/10.3390/min10070621
17. Ковчур А.С., Шелег В.К., Жорник В.И., Ковалева С.А. Модифицирование керамического кирпича добавками неорганических техногенных продуктов водоподготовки ТЭЦ // Наука и техника. 2020. Т. 19 (3). С. 204–214. https://doi.org/10.21122/2227-1031-2020-19-3-204-214
17. Kovchur A.S., Sheleh V.K., Zhornik V.I., Kovaliova S.A. Modification of a ceramic brick additives of inorganic technogenic products of water treatment of combined Heat and Power Plant. Nauka i tehnika. 2020. Vol. 19 (3), pp. 204–214. (In Russian) https://doi.org/10.21122/2227-1031-2020-19-3-204-214
18. Pranckevičiene J., Pundiene I. Effect of mechanically activated nepheline-syenite additive on the physical-mechanical properties and frost resistance of ceramic materials composed of illite clay and mineral wool waste. Materials. 2023. Vol. 16. 4943. https://doi.org/10.3390/ma16144943
19. Сапелкина Т.В., Стороженко Г.И., Шоева Т.Е. Композиционные керамические материалы из природных и техногенных пород Республики Тыва // Строительные материалы. 2023. № 5. С. 9–13. https://doi.org/10.31659/0585-430X-2023-813-5-9-13
19. Sapelkina T.V., Storozhenko G.I., Shoeva T.E. Composite ceramic materials from natural and technogenic rocks of the Republic of Tyva. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 9–13. (In Russian). https://doi.org/10.31659/0585-430X-2023-813-5-9-13
20. Marrocchino E., Zanelli C., Guarini G., Dondi M. Recycling mining and construction wastes as temper in clay bricks. Applied Clay Science. 2021. Vol. 209. 106152. https://doi.org/10.1016/j.clay.2021.106152
21. Harrati A., Arkame Y., Manni A., El Haddar A., Achiou B., El Bouari A., Hassani Iz-E.A., Sdiri A., Sadik C. Cordierite-based refractory ceramics from natural halloysite and peridotite: Insights on technological properties. Journal of the Indian Chemical Society. 2022. Vol. 99. 100496. https://doi.org/10.1016/j.jics.2022.100496
22. Gu X., Ling Y. Characterization and properties of Chinese red clay for use as ceramic and construction materials. Science Progress. 2024. Vol. 107. No. 1, pp. 1–17. https://doi.org/10.1177/00368504241232534
23. Mengue P.C., Mbessa M., Cengiz O., Kaze R.C., Alomayri T.S., Pettang C. Influence of firing temperature on selected mechanical properties of alluvial clay blended with a limestone and kaolin mixture. Geosystem Engineering. 2023. Vol. 26. No. 4, pp. 159–178. https://doi.org/10.1080/12269328.2023.2223212
24. Martínez-Martínez S., Pérez-Villarejo L., Garzón E., Sánchez-Soto P.J. Influence of firing temperature on the ceramic properties of illite-chlorite-calcitic clays. Ceramics International. 2023. Vol. 49, pp. 24541–24557. https://doi.org/10.1016/j.ceramint.2022.11.077
25. Wiśniewska K., Pichór W., Kłosek-Wawrzyn E. Influence of firing temperature on phase composition and color properties of ceramic tile bodies. Materials. 2021. Vol. 14. 6380. https://doi.org/10.3390/ma14216380
26. Christ R., Bourscheid I., Pacheco F., da Silva M.G., Ehrenbring H.Z., da Silva A.B., Tutikian B.F. Effect of firing temperature and mineral composition on the mechanical properties of silty clays. Revista Matéria. 2023. Vol. 28. No. 3. https://doi.org/10.1590/1517-7076-RMAT-2023-0181
2. Cobîrzan N., Muntean R., Thalmaier G., Felseghi R.-A.Recycling of mining waste in the production of masonry units. Materials. 2022. Vol. 15. 594. https://doi.org/10.3390/ma15020594
3. Murmu A.L., Patel A. Towards sustainable bricks production: an overview. Construction and Building Materials. 2018. Vol. 165, pp. 112–125. https://doi.org/10.1016/j.conbuildmat.2018.01.038
4. Болдырев Г.В., Стороженко Г.И., Чернейкин М.А. Особенности сырьевой базы Кузбасса для производства керамического кирпича // Строительные материалы. 2022. № 8. С. 18–22. https://doi.org/10.31659/0585-430X-2022-805-8-18-22
4. Boldyrev G.V., Storozhenko G.I., Cherneykin M.A. Features of the raw material base of Kuzbass for the production of ceramic bricks. Stroitel’nye Materialy [Construction Materials]. 2022. No. 8, pp. 18–22. (In Russian). https://doi.org/10.31659/0585-430X-2022-805-8-18-22
5. Li R., Zhou Y., Li C., Li S., Huang Z. Recycling of industrial waste iron tailings in porous bricks with low thermal conductivity. Construction and Building Materials. 2019. Vol. 213, pp. 43–50. https://doi.org/10.1016/j.conbuildmat.2019.04.040
6. da Silva F.L., Araújo F.G.S., Teixeira M.P., Gomes R.C., von Krüger F.L. Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic. Ceramics International. 2014. Vol. 40. No. 10, pp. 16085–16089. https://doi.org/10.1016/j.ceramint.2014.07.145
7. Suvorova O.V., Selivanova E.A., Mikhailova J.A., Masloboev V.A., Makarov D.V. Ceramic products from mining and metallurgical waste. Applied Sciences. 2020. Vol. 10. 3515. https://doi.org/10.3390/app10103515
8. Wei Z. Zhao J., Wang W., Yang Y., Zhuang S., Lu T., Hou Z. Utilizing gold mine tailings to produce sintered bricks. Construction and Building Materials. 2021. Vol. 282. 122655. https://doi.org/10.1016/j.conbuildmat.2021.122655
9. Guan H., Zhang B., Yang J., Zhan X., Feng P. Effect of iron content on high strength and environmentally friendly water-permeable bricks prepared from W-Mo tailing and iron slags. JOM. 2024. Vol. 76. No. 3, pp. 1447–1455. https://doi.org/10.1007/s11837-023-06284-6
10. Simão F.V., Chambart H., Vandemeulebroeke L., Nielsen P., Adrianto L.R., Pfister S., Cappuyns V. Mine waste as a sustainable resource for facing bricks . Journal of Cleaner Production. 2022. Vol. 368. 133118. https://doi.org/10.1016/j.jclepro.2022.133118
11. Li R., Yin Z., Lin H. Research status and prospects for the utilization of lead-zinc tailings as building materials. Buildings. 2023. Vol. 13. 150.
https://doi.org/10.3390/buildings13010150
12. Ettoumi M., Jouini M., Neculita C.M., Bouhlel S., Coudert L., Taha Y., Benzaazoua M. Characterization of phosphate processing sludge from Tunisian mining basin and its potential valorization in fired bricks making. Journal of Cleaner Production. 2021. Vol. 284. 124750. https://doi.org/10.1016/j.jclepro.2020.124750
13. Loutou M., Taha Y., Benzaazoua M., Daafi Y., Hakkou R. Valorization of clay by-product from Moroccan phosphate mines for the production of fired bricks. Journal of Cleaner Production. 2019. Vol. 229, pp. 169–179.
https://doi.org/10.1016/j.jclepro.2019.05.003
14. Sutcu M., Alptekin H., Erdogmus E., Er Y., Gencel O. Characteristics of fired clay bricks with waste marble powder addition as building materials. Construction and Building Materials. 2015. Vol. 82, pp. 1–8. http://dx.doi.org/10.1016/j.conbuildmat.2015.02.055
15. Ilyina V., Klimovskaya E., Bubnova T. Ceramic materials based on clay and soapstone waste: thermo-mechanical properties and application. Minerals. 2023. Vol. 13. 1376. https://doi.org/10.3390/min13111376
16. Terrones-Saeta J.M., Suárez-Macías J., Corpas-Iglesias F.A., Korobiichuk V., Shamrai V. Development of ceramic materials for the manufacture of bricks with stone cutting sludge from granite. Minerals. 2020. Vol. 10. 621. https://doi.org/10.3390/min10070621
17. Ковчур А.С., Шелег В.К., Жорник В.И., Ковалева С.А. Модифицирование керамического кирпича добавками неорганических техногенных продуктов водоподготовки ТЭЦ // Наука и техника. 2020. Т. 19 (3). С. 204–214. https://doi.org/10.21122/2227-1031-2020-19-3-204-214
17. Kovchur A.S., Sheleh V.K., Zhornik V.I., Kovaliova S.A. Modification of a ceramic brick additives of inorganic technogenic products of water treatment of combined Heat and Power Plant. Nauka i tehnika. 2020. Vol. 19 (3), pp. 204–214. (In Russian) https://doi.org/10.21122/2227-1031-2020-19-3-204-214
18. Pranckevičiene J., Pundiene I. Effect of mechanically activated nepheline-syenite additive on the physical-mechanical properties and frost resistance of ceramic materials composed of illite clay and mineral wool waste. Materials. 2023. Vol. 16. 4943. https://doi.org/10.3390/ma16144943
19. Сапелкина Т.В., Стороженко Г.И., Шоева Т.Е. Композиционные керамические материалы из природных и техногенных пород Республики Тыва // Строительные материалы. 2023. № 5. С. 9–13. https://doi.org/10.31659/0585-430X-2023-813-5-9-13
19. Sapelkina T.V., Storozhenko G.I., Shoeva T.E. Composite ceramic materials from natural and technogenic rocks of the Republic of Tyva. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 9–13. (In Russian). https://doi.org/10.31659/0585-430X-2023-813-5-9-13
20. Marrocchino E., Zanelli C., Guarini G., Dondi M. Recycling mining and construction wastes as temper in clay bricks. Applied Clay Science. 2021. Vol. 209. 106152. https://doi.org/10.1016/j.clay.2021.106152
21. Harrati A., Arkame Y., Manni A., El Haddar A., Achiou B., El Bouari A., Hassani Iz-E.A., Sdiri A., Sadik C. Cordierite-based refractory ceramics from natural halloysite and peridotite: Insights on technological properties. Journal of the Indian Chemical Society. 2022. Vol. 99. 100496. https://doi.org/10.1016/j.jics.2022.100496
22. Gu X., Ling Y. Characterization and properties of Chinese red clay for use as ceramic and construction materials. Science Progress. 2024. Vol. 107. No. 1, pp. 1–17. https://doi.org/10.1177/00368504241232534
23. Mengue P.C., Mbessa M., Cengiz O., Kaze R.C., Alomayri T.S., Pettang C. Influence of firing temperature on selected mechanical properties of alluvial clay blended with a limestone and kaolin mixture. Geosystem Engineering. 2023. Vol. 26. No. 4, pp. 159–178. https://doi.org/10.1080/12269328.2023.2223212
24. Martínez-Martínez S., Pérez-Villarejo L., Garzón E., Sánchez-Soto P.J. Influence of firing temperature on the ceramic properties of illite-chlorite-calcitic clays. Ceramics International. 2023. Vol. 49, pp. 24541–24557. https://doi.org/10.1016/j.ceramint.2022.11.077
25. Wiśniewska K., Pichór W., Kłosek-Wawrzyn E. Influence of firing temperature on phase composition and color properties of ceramic tile bodies. Materials. 2021. Vol. 14. 6380. https://doi.org/10.3390/ma14216380
26. Christ R., Bourscheid I., Pacheco F., da Silva M.G., Ehrenbring H.Z., da Silva A.B., Tutikian B.F. Effect of firing temperature and mineral composition on the mechanical properties of silty clays. Revista Matéria. 2023. Vol. 28. No. 3. https://doi.org/10.1590/1517-7076-RMAT-2023-0181
For citation: Khudyakova L.I., Kotova I.Yu., Garkusheva N.M., Paleev P.L. Study of mechanical properties of building ceramics with the addition of non-traditional raw materials. Stroitel'nye Materialy [Construction Materials]. 2024. No. 9, pp. 23–28. (In Russian). https://doi.org/10.31659/0585-430X-2024-828-9-23-28