Improvement in Qualitative Characteristics of Pressed Products from Citrogypsum and Based Binder

Number of journal: 5-2023
Autors:

Alfimova N.I.,
Pirieva S.Yu.,
Levickaya K.M.

DOI: https://doi.org/10.31659/0585-430X-2023-813-5-89-94
УДК: 666.914

 

AbstractAbout AuthorsReferences
Gypsum by-products are a good alternative to natural gypsum stone. However, the production of high-quality binders and materials based on them is possible only with the use of non-traditional methods and approaches that avoid the negative impact of the characteristics of gypsum-containing waste on the properties of the final product. One of these technological methods is the manufacture of products using the principles of the semi-dry pressing method. However, due to the high content of the binder component in the pressed raw mix, significant defects in the form of delaminations and wedges can occur on the surface of the products, which negatively affects not only the aesthetic but also the physical and mechanical characteristics of the products. The appearance of such defects is associated with the high adhesion of the binder to the metal surface of the mold, as well as with the near-wall friction of the particles during pressing and extrusion. In this connection, the purpose of this study was to consider the possibility of improving the quality characteristics (appearance, average density, compressive strength) of products manufactured by pressing a semi-dry raw mix. The object of research was a gypsum-containing waste from the biochemical synthesis of citric acid – citrogypsum and a binder based on it. It has been established that other things being equal, the manufacturing parameters, the introduction of a foaming agent additive in the raw mix, and the replacement of the forming surface material with plastic help to eliminate defects on the surface of the samples, as well as to ensure an increase in average density by 10%, and compressive strength by 60.6%.
N.I. ALFIMOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.Yu. PIRIEVA1, Assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.);
K.M. LEVICKAYA1,2, Postgraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostukov Street, Belgorod, 308012, Russian Federation)
2 Belgorod National Research University (85, Pobedy Street, 308015, Belgorod, Russia Russian Federation)

1. Гипсовые материалы и изделия (производство и применение): Справочник / Под общ. ред. А.В. Ферронской. М.: АСВ, 2004. 488 с.
1. Gipsovye materialy i izdeliya (proizvodstvo i primenenie) Spravochnik. Pod obshhey redakciey A.V. Ferronskoy [Gypsum materials and products (production and use)]. Moscow: ASV, 2004. 488 p. (In Russian).
2. Kamarou M., Korob N., Kwapinski W., Romanovski V. High-quality gypsum binders based on synthetic calcium sulfate dihydrate produced from industrial waste. Journal of Industrial and Engineering Chemistry. 2021. Vol. 100, pp. 324–332. DOI: 10.1016/j.jiec.2021.05.006
3. Lushnikova N., Dvorkin L. 25 – Sustainability of gypsum products as a construction material. Sustainability of Construction Materials (Second Edition). 2016, pp. 643–681. DOI: 10.1016/B978-0-08-100370-1.00025-1
4. Wan Y., Hui X., He X., Li J., Xue J., Feng D., Liu X., Wang S. Performance of green binder developed from flue gas desulfurization gypsum incorporating Portland cement and large-volume fly ash. Construction and Building Materials. 2022. Vol. 348. 128679. DOI: 10.1016/j.conbuildmat.2022.128679
5. Calderón-Morales B.R.S., García-Martínez A., Pineda P., García-Tenório R. Valorization of phosphogypsum in cement-based materials: Limits and potential in eco-efficient construction. Journal of Building Engineering. 2021. Vol. 44. 102506. DOI: 10.1016/j.jobe.2021.102506
6. Pirieva S.Yu., Alfimova N.I., Levickaya K.M. Citrogypsum as a raw material for gypsum binder production. Construction of Unique Buildings and Structures. 2022. No. 2 (100). 10007. DOI: 10.4123/CUBS.100.7
7. Алфимова Н.И., Пириева С.Ю., Елистраткин М.Ю., Кожухова Н.И., Титенко А.А. Обзорный анализ способов получения вяжущих из гипсосодержащих отходов промышленных производств // Вестник БГТУ им. В.Г. Шухова. 2020. № 11. С. 8–23. DOI: 10.34031/2071-7318-2020-5-11-8-23
7. Alfimova N.I., Pirieva S.Yu., Elistratkin M.Yu., Kozhuhova N.I., Titenko A.A. Production methods of binders containing gypsum-bearing wastes: a review. Vestnik of BSTU named after V.G. Shukhov. 2020. No. 11, pp. 8–23. (In Russian) DOI:  10.34031/2071-7318-2020-5-11-8-23
8. Rashad A.M. Phosphogypsum as a construction material. Journal of Cleaner Production. 2017. Vol. 166, pp. 732–743. DOI: 10.1016/j.jclepro.2017.08.049
9. Petropavlovskii K., Novichenkova T., Petropavlovskaya V., Sulman M., Fediuk R., Amran M. Faience waste for the production of wall. Materials. 2021. Vol. 14 (21). 6677. DOI: https://doi.org/10.3390/ma14216677
10. Zhou J., Li X., Zhao Y., Shu Z. Preparation of paper-free and fiber-free plasterboard with high strength using phosphogypsum. Construction and Building Materials. 2020. Vol. 243. 118091. DOI: 10.1016/j.conbuildmat.2020.118091
11. Петропавловская В.Б., Бурьянов А.Ф., Петропавловский К.С., Новиченкова Т.Б. Высокопрочные гипсовые материалы // Химия, физика и механика материалов. 2019. № 1 (20). С. 3–13.
11. Petropavlovskaya V.B., Buryanov A.F., Petropavlovskii K.S., Novichenkova T.B. High strength gypsum materials. Khimiya, fizika i mexanika materialov. 2019. No. 1 (20), pp. 3–13. (In Russian).
12. Петропавловская В.Б., Образцов И.В., Коровицын Д.А., Петропавловский К.С. Программный комплекс для проектирования составов безобжиговых мономинеральных композитов // Программные продукты и системы. 2018. № 1. С. 199–203. DOI: 10.15827/0236-235X.031.1.199-203
12. Petropavlovskaya V.B., Obrazczov I.V., Korovicyn D.A., Petropavlovskij K.S. A software complex for designing unburned monomeneral composites. Programmnye produkty i sistemy. 2018. Vol. 31. No. 1, pp. 199–203. (In Russian). DOI: 10.15827/0236-235X.031.1.199-203
13. Мирсаев Р.Н., Ахмадулина И.И., Бабков В.В., Недосеко И.В., Гаитова А.Р., Кузьмин В.В. Гипсошлаковые композиции из отходов промышленности в строительных технологиях // Строительные материалы. 2010. № 7. С. 4–6.
13. Mirsaev R.N., Axmadulina I.I., Babkov V.V., Nedoseko I.V., Gaitova A.R., Kuzmin V.V. Gypsum-slag compositions from industrial waste in construction technologies. Stroitel’nye Materialy [Construction Materials]. 2010. No. 7, pp. 4–6. (In Russian).
14. Халиков Р.М., Синицина Е.А., Силантьева Е.И., Пудовкин А.Н., Недосеко И.В. Модифицирующее усиление твердения прессованных строительных гипсовых нанокомпозитов // Нанотехнологии в строительстве: научный интернет-журнал. 2019. Т. 1. № 5. С. 549–560. DOI: 10.15828/2075-8545-2019-11-5-549-560
14. Khalikov R.M., Sinitsina E.A., Silantyeva E.I., Pudovkin A.N., Nedoseko I.V. Modifying intensification of the hardening of extruded construction gypsum nanocomposites. Nanotehnologii v stroitel’stve. 2019. Vol. 11. No. 5, pp. 549–560. (In Russian). DOI: 10.15828/2075-8545-2019-11-5-549-560
15. Alfimova N., Pirieva S., Levickaya K., Kozhukhova N., Elistratkin M. The production of gypsum materials with recycled citrogypsum using semi-dry pressing technology. Recycling. 2023. Vol. 8 (2). 34. DOI: 10.3390/recycling8020034
16. Хасанов О.Л., Двилис Э.С., Качаев А.А. Метод коллекторного компактирования нано- и полидисперсных порошков: учебное пособие. Томск: Изд-во Томского политехнического университета, 2008. 102 с.
16. Khasanov O.L., Dvilis E.S., Kachaev A.A. Metod kollektornogo kompaktirovaniya nano- i polidispersnyx poroshkov: uchebnoe posobie [The method of collector compaction of nano- and polydisperse powders]. Tomsk: Publishing House of Tomsk Polytechnic University. 2008. 102 p.
17. Tunstall L.E., Ley M.T., Scherer G.W. Air entraining admixtures: Mechanisms, evaluations, and interactions. Cement and Concrete Research. 2021. Vol. 150. 106557. DOI: 10.1016/j.cemconres.2021.106557
18. Aïtcin P.-C. Entrained air in concrete: Rheology and freezing resistance. Editor(s): Pierre-Claude Aïtcin, Robert J Flatt. Science and Technology of Concrete Admixtures. Woodhead Publishing, 2016, pp. 87–95.
19. Shah H.A., Yuan Q., Zuo S. Air entrainment in fresh concrete and its effects on hardened concrete-a review. Construction and Building Materials. 2021. Vol. 274. 121835. DOI: 10.1016/j.conbuildmat.2020.121835
20. Hewlett P.C., Justnes H., Edmeades R.M. Cement and concrete admixtures. Butterworth-Heinemann. 2019, pp. 641–698. DOI: 10.1016/B978-0-08-100773-0.00014-9
21. Батяновский Э.И., Бондарович А.И. Вибропрессованный бетон: технология и свойства. Минск: БНТУ, 2018. 263 с.
21. Batyanovskiy E.I., Bondarovich A.I. Vibropressovanniy beton: tekhnologiya i svoystva [Vibropressed concrete: technology and properties]. Minsk: BNTU. 2018. 263 p.
22. Шаталова С.В., Чернышева Н.В., Лесовик В.С., Елистраткин М.Ю., Шеремет А.А. Разработка комплексного решения для 3D-печати стеновых конструкций // Вестник БГТУ им. В.Г. Шухова. 2022. № 10. С. 8–19. DOI: 10.34031/2071-7318-2022-7-10-8-19
22. Shatalova S.V., Chernysheva N.V., Lesovik V.S., Elistratkin M.Yu., Sheremet A.A. Development of a comprehensive solution for 3D printing of wall structures. Vestnik of BSTU named after V.G. Shukhov. 2022. No. 10, pp. 8–19. (In Russian). DOI: 10.34031/2071-7318-2022-7-10-8-19

For citation: Alfimova N.I., Pirieva S.Yu., Levickaya K.M. Improvement in qualitative characteristics of pressed products from citrogypsum and based binder. Stroitel’nye Materialy [Construction Materials]. 2023. No. 5, pp. 89–94. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-813-5-89-94


Print   Email