The Features of Using Self-Compacting Fine-Grained Fresh Concrete during Winter Concreting of Joints

Number of journal: 6-2022
Autors:

Rumyantsev E.V.,
Bayburin A.Kh.

DOI: https://doi.org/10.31659/0585-430X-2022-803-6-51-57
УДК: 691.32

 

AbstractAbout AuthorsReferences
To reduce the time of housing construction, advanced technologies of industrial housing construction are considered. Given the design features of the joints of reinforced concrete structures of modernized large-panel buildings, preference is given to in-situ joints. To ensure a high speed of installation of precast concrete products, including in winter conditions of work, the use of Ultra High Performance Concretes (UHPC) with specified characteristics is required. The article discusses the issues of improving the technology of winter concreting of joints through the use of fresh of self-compacting fine-grained concrete (SCFGC) based on dry constructional mixes (DCM) with the required intensity of curing and stiffness of concrete for pouring. The main types of in-situ joints of prefabricated reinforced concrete structures of large-panel buildings are considered. As a result of the generalization of experimental studies and extensive industrial experience in the use of SCFGC in the construction of prefabricated buildings, recommendations are given on the designation of structural and technological parameters of the quality of fresh of SCFGC, hardened concretes based on them, the features of the technology for the preparation of fresh of SUMBS, concreting and quality control. The successful application of SCFGC based on DCM allows to ensure the quality of large-panel housing construction, taking into account the all-weather nature of the production of in-situ work on sealing the joints of prefabricated structures, allows you to increase the pace of construction and reduce its time by 2–3 times compared to in-situ buildings.
E.V. RUMYANTSEV1, Chief Designer of Product Department (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.Kh. BAYBURIN2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 LLC “PIK-Constructional Technologies” (19/1, Barricadnaya Street, Moscow, 123242, Russian Federation)
2 2 National Research South Ural State University (76, Lenina Avenue, Chelyabinsk, 454080, Russian Federation)

1. Singhal S., Chourasia A., Chellappa S., Parashar J. Precast reinforced concrete shear walls: State of the art review. Structural Concrete. 2019. https://doi.org/10.1002/suco.201800129
2. Alfred A. Yee, Hon. D. Structural and economic benefits of precast/prestressed concrete construction. PCI Journal. 2001. Vol. 46. No. 4, pp. 34–42.
3. Nikolaev S.V., Shreiber А.К., Etenko V.P. Panel-frame housing construction – a new stage in the development of frame-panel housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 2, pp. 3–7. (In Russian).
4. Dubynin N.V. From large-panel housing construction of the 20th century to the system of panel-frame housing construction of the 21st century. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 10, pp. 12–19. (In Russian).
5. Sapacheva L.V. Modernization of large-panel housing construction – the locomotive of economy-class housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2011. No. 6, pp. 2–6. (In Russian).
6. Muhamediev T.A., Kudinov O.V. Increasing the number of storeys of prefabricated large-panel buildings. Beton i zhelezobeton [Concrete and reinforced concrete]. 2006. No. 3, pp. 7–9. (In Russian).
7. Falikman V.R. Concretes of established functionality – «Smart concretes». Conference Proceedings ICCX Russia. 3–6 December 2019. St. Petersburg, pp. 52–63. (In Russian).
8. Nikolaev S.V. The revival of large-panel housing construction in Russia. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 4, pp. 2–8. (In Russian).
9. Blazhko V.P. Trends in the development of structural systems of panel housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 4, pp. 43–46. (In Russian).
10. Abramov M.A. A new series of panel houses up to 25 floors. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 3, pp. 9–14. (In Russian).
11. Kireeva E.I. Strength of horizontal joints of panels and multi-hollow floor slabs. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 10, pp. 2–6. (In Russian).
12. International Federation for Structural Concrete (fib). Special design considerations for precast prestressed hollow core floors. bulletin 2000. No. 6. 172 p.
13. Kireeva E.I. Large-panel buildings with loop connections of structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 9, pp. 47–51. (In Russian).
14. Danel’ V.V. Improvement of loop joints of wall panels. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 1–2, pp. 11–15. (In Russian).
15. Suur-Askola P. Technologically improved product from the company Peikko – PVL cable loop. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 3, pp. 21–23. (In Russian).
16. Zenin S.A. Designing residential large-panel houses using non-welded joints on cable loops. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 7, pp. 14–15. (In Russian).
17. PVL Connecting Loop. Technical Manual. Peikko Group. 2019, 30 p.
18. Zenin S.A., Sharipov R.Sh., Kudinov O.V. Investigation of the work of plug joints in large-panel constructive systems of buildings. Beton i zhelezobeton [Concrete and reinforced concrete]. 2021. No. 5–6 (607–608), pp. 60–66. (In Russian).
19. Provost-Smith Douglas J. Investigation of grouted dowel connection for precast concrete wall construction. Electronic Thesis and Dissertation Repository. 2016. 4298 https://ir.lib.uwo.ca/etd/4298
20. Nehdy M., Elsayed M., Provost-Smith D. J. Investigation of grouted precast concrete wall connections at subfreezing conditions. Material of Conference “Resilient infrastructure”. London, GB. 2016, pp. 1–10. https://www.researchgate.net/publication/304115263_INVESTIGATION_OF_GROUTED_PRECAST_CONCRETE_WALL_CONNECTIONS_AT_SUBFREEZING_CONDITIONS#fullTextFileContent
21. Rumyantsev E.V., Vidyakin A.A., Bayburin A.Kh. Temperature monitoring of monolithic joints of large-panel buildings during winter concreting. Beton i zhelezobeton [Concrete and reinforced concrete]. 2020. No. 1 (601), pp. 42–48. (In Russian).
22. Okamura M., Ouchi H. Self-compacting high performance concrete. Progress in Structural Engineering and Materials. 1998. Vol. 1. Iss. 4, pp. 378–383. DOI: https://doi.org/10.1002/pse.2260010406
23. Self-Compacting Concrete. Procedings of the First International RILEM Symposium. Editied by A. Skarendahl and O. Petersson. RELEM Publication S.A.R.L. Stockholm, Sweden. 1999. 578 p.
24. Khayat K.H. Workability, testing, and performance of self-consolidating concrete. ACI Materials Journal. 1999. Vol. 96. No. 3, pp. 346–353.
25. Batudaeva A.V., Kardumyan G.S., Kaprielov S.S. High-strength modified concrete from self-compacting mixtures. Beton i zhelezobeton [Concrete and reinforced concrete]. 2005. No. 4, pp. 14–18. (In Russian).
26. Nesvetaev G.V., Lopatina Yu.Yu. Designing the macrostructure of a self-compacting concrete mix and its mortar component. Internet-zhurnal «Naukovedeniye». 2015. Vol. 7. No. 5. (In Russian). DOI: http://dx.doi.org/10.15862/48TVN515
27. Mozgalev K.M., Golovnev S.G., Mozgaleva D.A. Efficiency of use of self-compacting concretes in the construction of monolithic buildings in winter conditions. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya “Stroitel’stvo i arhitektura”. 2014. Vol. 14. No. 1, pp. 33–37. (In Russian).
28. Minakov Yu.A., Kononova O.V., Anisimov S.N., Gryazina M.V. Management of concrete hardening kinetics at negative temperatures. Fundamental’nye issledovaniya. 2013. No. 4, pp. 307–311. (In Russian).
29. Kaprielov S., Sheynfeld A., Arzumanov I., Chilin I. New national standard for self-compacting concrete mixes. Bulletin of Science and Research Center of Construction. 2021. Vol. 30 (3), pp. 30–40. DOI: https://doi.org/10.37538/2224-9494-2021-3(30)-30-40. (In Russian).
30. Titova L., Beylina M., Khlopuk V., Shabalin V. Development of a national standard fortesting methods for self-compacting concrete mixture. Bulletin of Science and Research Center of Construction. 2021. Vol. 30 (3), pp. 108–116. DOI: https://doi.org/10.37538/2224-9494-2021-3(30)-108-116. (In Russian).
31. Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting fine-grained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
32. Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Dynamics of strength gain of “cold” self-compacting fine-grained concretes during winter concreting of joints. Stroitel’nye Materialy [Construction Materials]. 2021. No. 10, pp. 12–20. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-796-10-12-20
33. Kuznecova T.V. Composition, properties and application of sulfoaluminate cement // Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2018. Vol. 4. No. 1, pp. 1–7. (In Russian).
34. Bazhenov Yu.M., Demyanova V.S., Kalashnikov V.I. Modificirovannye vysokokachestvennye betony [Modified high-quality concrete]. Moscow: ASV. 2006. 368 p.
35. Batrakov V.G. Concrete modifiers: new opportunities and prospects. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 4–7. (In Russian).
36. Bikbau M.YA., Nefedov A.S. Nanomodified cement and concrete based on it. ALITinform. 2020. No. 2 (59), pp. 2–13. (In Russian).
37. Kaprielov S.S., Travush V.I., Karpenko N.I., Shejnfeld A.V., Kardumyan G.S., Kiseleva YU.A., Prigozhenko O.V. Modified concretes of a new generation in the structures of the MIBC “Moscow-City”. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 13–17. (In Russian).
38. Krasnovskiy B.M., Dolgopolov N.N, Zagrekov V.V., Suhanov V.A., Lorettova R.N. Hardening of concretes on VNV at negative temperatures. Beton i zhelezobeton [Concrete and reinforced concrete]. 1991. No. 2, pp. 17–18. (In Russian).
39. Nesvetaev G.V. The effectiveness of the use of superplasticizers in concrete. Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 23–25. (In Russian).
40. Sorokin Yu.V., Kalashnikov O.O., Falikman V.R. Structural and technical properties of especially high-strength fast-hardening concretes. 80th anniversary of NIIZhB named after A.A. Gvozdev Proceedings. Moscow. 2007, pp. 178–194. (In Russian).
41. Usherov-Marshak A.V. Additives in concrete: progress and problems // Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 8–12. (In Russian).
42. Yuan Yu., Lin V., Pe T. Vysokokachestvennyj cementnyj beton s uluchshennymi svojstvami [High-performance cement concrete with improved properties] Moscow: ASV. 2014. 448 p.
43. Han B., Ding D, Wang J., Ou J. Nano-engineered cementitious composites. principles and practices. Singapore, Springer Nature Singapore Pte Ltd. 2019. 731 p.

For citation: Rumyantsev E.V., Bayburin A.Kh. The features of using self-compacting fine-grained fresh concrete during winter concreting of joints. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-51-57


Print   Email