Silicate Brick Using Mineral Modifiers of Various Composition

Number of journal: 1-2-2021
Autors:

Nelubova V.V.,
Strokova V.V.,
Popov A.L.

DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-115-120
УДК: 666.965.2

 

AbstractAbout AuthorsReferences
The dynamic building materials market poses challenges to increase the competitiveness of piece goods. This also fully applies to autoclaved pressed materials, the quality assurance of which still requires efforts on the part of manufacturers. The aim of this work was a comprehensive assessment of the effect of a highly dispersed active mineral modifier based on natural raw materials of various genesis on the properties of silicate bricks. Silicate and aluminosilicate rocks of crystalline and amorphous structure (sand, granite, silica clay, perlite) are used as raw materials for obtaining a modifier. The regularities of the influence of the type and concentration of the modifier on the physical and mechanical characteristics of the molding mixture, raw brick and finished silicate brick have been established. It is shown that the mineral modifier, regardless of the raw material component, has a high activity in relation to CaO and a high adsorption capacity, which leads to an increase in the raw brick strength and density, a decrease in porosity and water absorption. Increase in strength and frost resistance. The boundary concentrations (optimal dosage) of the mineral modifier instead of sand were determined in the silicate mixture in terms of solid matter, which is 10–15% depending on the type of raw material used. The structural features of the samples are shown, which determine the formation of a strong consolidated composite: the addition of a mineral modifier, regardless of its composition, ensures the formation of a polymineral polymorphic structural composite with a developed structure of a newly formed substance, characterized by good adhesion to the aggregate.
V.V. NELUBOVA1, Candidate of sciences (Engineering),
V.V. STROKOVA1, Doctor of sciences (Engineering);
A.L. POPOV2, Candidate of sciences (Engineering)

1 Belgorod State Technological University named after V.G. Shoukhov (46, Kostyukova street, Belgorod, 308012, Russian Federation)
2 North-Eastern Federal University in Yakutsk (42, Kulakovskogo Street, Yakutsk, 677007, Russian Federation)

1. Goncharova M.A., Ivashkin A.N. Development of optimal compositions of silicate concrete using local raw materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 6–8. (In Russian).
2. Chernyshov E.M., Potamoshneva N.D. Manufacture of silicate autoclave materials using wastes of the enrichment of KMA banded iron formation. Stroitel’nye Materialy [Construction Materials]. 1992. No. 11, pp. 4–5. (In Russian).
3. Volodchenko A.N., Lesovik V.S. Prospects for the widening of the range of autoclaved silicate materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 34–37. (In Russian).
4. Kuznetsova G.V., Morozova N.N., Klokov V.V., Zigangaraeva S.R. Silicate brick and autoclaved gas concrete with the use of waste of own production. Stroitel’nye Materialy [Construction Materials]. 2016. No. 4, pp. 76–79. (In Russian).
5. Kotlyar V.D., Kozlov A.V., Zhivotkov O.I., Kozlov G.A. Calcium–silicate brick on the basis of microspheres and lime. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 17–21. (In Russian).
6. Khusainov A.K., Gurova E.V. The use of the ash CHP in the production of silicate brick. Tehnika i tehnologii stroitel’stva. 2019. No. 2 (18), pp. 41–45. (In Russian).
7. Kapustin F.L., Vishnevskii A.A., Ufimtsev V.M. The use of waste ash and slag mixture in the production of autoclaved gas concrete. Gidrotekhnicheskoe stroitel’stvo. 2017. No. 5, pp. 29–33. (In Russian).
8. Zimakova G.A., Solonina V.A., Zelig M.P., Orlov V.S. Role of aleuropelites in formation of properties of lime-silicate materials of autoclaved hardening. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 4–9. DOI: https://doi.org/10.31659/0585-430X-2018-763-9-4-9 (In Russian).
9. Dzhandullaeva M.S., Atakuziev T.A. Possibility of using heat-treated tuffite as hydraulically active additives in the production of silicate products. Khimicheskaya promyshlennost’. 2017. Vol. 94. No. 1, pp. 27–30. (In Russian).
10. Leont’ev S.V., Golubev V.A., Shamanov V.A., Kurzanov A.D., Yakovlev G.I., Hazeev D.R. Modification of the structure of heat-insulating autoclaved gas concrete by the dipersion of multi-layer carbon nanotubes. Stroitel’nye Materialy [Construction Ma-terials]. 2016. No. 1–2, pp. 76–83. (In Russian).
11. Kuznetsova G.V., Shinkarev A.A., Morozova N.N., Gazimov A.Z. Additives for direct technology of silicate brick production. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 12–16. DOI: https://doi.org/10.31659/0585-430X-2018-763-9-12-16 (In Russian).
12. Ovchinnikov A.A., Akimov A.V., Hozin R.R. Studies of physicomechanical and operational indicators of modified gas concrete. Informacionnaya sreda vuza. 2016. No. 1 (23), pp. 398–405. (In Russian).
13. Sumin A.V., Strokova V.V., Neljubova V.V., Eremen-ko S.A. Foam gas concrete with nanostructured modifier. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1–2, pp. 70–75. (In Russian).
14. Neljubova V.V., Podgornyj I.I., Strokova V.V., Pal’shina Ju.V. Autoclaved aerated concrete with nanostructured aluminosilicate modifier. Stroitel’nye Materialy [Construction Materials]. 2016. No. 4, pp. 72–75. (In Russian).

For citation: Nelubova V.V., Strokova V.V., Popov A.L. Silicate brick using mineral modifiers of various composition. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 115–120. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-115-120


Print   Email