New Generation Composites for Special Facilities

Number of journal: 3-2021
Autors:

Lesovik V.S.,
Fediuk R.S.

DOI: https://doi.org/10.31659/0585-430X-2021-789-3-9-17
УДК: 666.972.1

 

AbstractAbout AuthorsReferences
The results of studies, proving that the application of the theoretical foundations of geonics (geomimetics) makes it possible to obtain composite binders and concretes based on them for the construction of special structures, are given. Fiber-reinforced concretes based on binders containing a complex of multi-component additives have been developed. The impact endurance of steel and basalt fiber reinforced concretes increase more than eight times compared to non-reinforced compounds. The increase in impact strength and abrasion is achieved due to the introduction of nano-modified hydrothermal nano-silicons into the compositions, which makes it possible to use them when constructing federal highways and runways. As a result of purposeful control of the structure formation of cement composites with the use of fly ash and screening of limestone chippings crushed together with cement in a vario-planetary mill, compositions that are poorly permeable to steam and gas are obtained. The potential for controlling structure formation when producing sound-absorbing cellular concretes with an open porosity above 60% has been confirmed.
V.S. LESOVIK1, Doctor of Science (Engineering), Corresponding Member of RAACS of RAASN (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.S. FEDIUK2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)
2 Far Eastern Federal University (10, Ajax, Russky Island, Vladivostok, 690922, Russian Federation)

1. Haber Z.B., Muñoz J.F, De la Varga I., Graybeal B.A. Bond characterization of UHPC overlays for concrete bridge decks: laboratory and field testing. Construction and Building Materials. 2018. Vol. 190, pp. 1056–1068. DOI: 10.1016/j.conbuildmat.2018.09.167
2. Riera J.D. On the stress analysis of structures subjected to aircraft impact forces. Nuclear Engineering and Design. 1968. Vol. 8. pp. 415–426. https://doi.org/10.1016/0029-5493(68)90039-3
3. Riera J.D. A Critical reappraisal of nuclear power plant safety against accidental aircraft impact. Nuclear Engineering and Design. 1980. Vol. 57, pp. 193–206. https://doi.org/10.1016/0029-5493(80)90233-2
4. Korolev Ye.V., Ochkina N.A., Bazhenov Yu.M., Proshin A.P. Radiation-protective properties of very heavy mortars based on high-alumina cement. Stroitel’nye Materialy [Construction Materials]. 2006. No. 4, pp. 54–56. (In Russian).
5. Bazhenov Yu.M., Proshin A.P., Yeremkin A.I., Korolev Ye.V. Extra Heavy Concrete for Radiation Protection. Stroitel’nye Materialy [Construction Materials]. 2005. No. 8, pp. 6–8. (In Russian).
6. Dubrovskiy V.B. Radiacionnaya stojkost’ stroitel’nyh materialov [Radiation resistance of building materials]. Moscow: Stroyizdat. 1973. 278 p.
7. Eger T. Betony v tekhnike zashchity ot izlucheniy [Concrete in radiation protection technology]. Moscow: Atomizdat. 1960. 84 p.
8. Royak S.M., Royak G.S. Special’nye cementy [Special cements]. Moscow: Stroyizdat. 1993. 392 p.
9. Zagoruiko T.V. On the issue of heat resistance and fire resistance of building materials. Materials of the IV international scientific and practical conference. Voronezh. 2009, pp. 85–87. (In Russian).
10. Zhurtov A.V., Khezhev T.A., Kokoev M.N. An investigation of the stress-strain state of two-layer armocement structures on the power and temperature effects during a fire. Materials Science Forum. 2018. Vol. 931 MSF, pp. 219–225. https://doi.org/10.4028/www.scientific.net/MSF.931.219
11. Strakhov V.L., Garashchenko A.N. Fire protection of building structures: modern means and methods of optimal design. Stroitel’nye Materialy [Construction Materials]. 2002. No. 6, pp. 2–5. (In Russian).
12. De la Varga I., Spragg R., Muñoz J.F., Graybeal B.A. Cracking, bond, and durability performance of internally cured cementitious grouts for prefabricated bridge element connections. Sustainability. 2018. Vol. 10. No. 11, pp. 3881. DOI: 10.3390/su10113881
13. Yoo D.-Y., Banthia N. Mechanical propertiesof ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites. 2016. Vol. 73, pp. 267–280. https://doi.org/10.1016/j.cemconcomp.2016.08.001
14. Yoo D.-Y., Banthia N., Yoon Y.-S. Predicting service deflection of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP bars. Composites Part B: Engineering. 2016. Vol. 99, pp. 381–397. https://doi.org/10.1016/j.compositesb.2016.06.013
15. Lesovik V.S. Construction Materials. Present and future. Vestnik MGSU. 2017. No. 1. pp. 9–16.(In Russian).
16. Fediuk R.S., Mochalov A.V., Lesovik V.S., Gridchin A.M., Fisher H.B. Composite binders and self-compacting fiber-reinforced concrete for protective structures. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shuhova. 2018. No. 7. pp. 77–85 (In Russian).
17. Lesovik V.S., Fomina E.V., Ayzenshtadt A.M. Some aspects of technogenic metasomatosis in construction material science. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 100–106. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-100-106 (In Russian). 18. Lesovik V.S. Geonika (geomimetika). Primery realizacii v stroitel’nom materialovedenii [Geonics (geomimetics). Examples of implementation in building materials science]. Belgorod: Publishing house of BSTU named after V.G. Shukhov. 2016. 287 p.
19. Solomatov V.I., Erofeev V.T., Smirnov V.F. Biologicheskoe soprotivlenie materialov [Biological resistance of materials]. Saransk: Publishing house of Mordov. University. 2001. 196 p.
20. Erofeev V.T., Rodin A.I., Bogatov A.D. Biocidal Portland cement with improved physical and mechanical properties. International Journal for Computational Civil and Structural Engineering. 2012. Vol. 8. No. 3, pp. 81–92. (In Russian).
21. Kotlyarevskiy V.A. Calculation of the reliability of seismic resistance of structures. Nauka i bezopasnost’. 2014. No. 3 (12), pp. 12–19. (In Russian).
22. Kotlyarevsky V.A., Ganushkin V.I., Kostin A.A. Ubezhishcha grazhdanskoj oborony: konstrukciya i raschet [Civil defense shelters: design and calculation]. Moscow: Stroyizdat, 1989. 606 p.
23. Lesovik V.V., Potapov V.V., Alfimova N.I., Ivasho-va O.V. Increasing the efficiency of binders through the use of nanomodifiers. Stroitel’nye Materialy [Construction Materials]. 2011. No. 12, pp. 60–62 (In Russian).

For citation: Lesovik V.S., Fediuk R.S. New generation composites for special facilitie. Stroitel’nye Materialy [Construction Materials]. 2021. No. 3, pp. 9–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-789-3-9-17


Print   Email