Moisture Resistance of Sulfur-Extended Asphalt Concrete. Results of the Study and Features of Definition

Number of journal: 3-2021
Autors:

Le H.T.,
Gladkikh V.A.,
Korolev E.V.,
Grishina A.N.

DOI: https://doi.org/10.31659/0585-430X-2021-789-3-39-44
УДК: 691.168

 

AbstractAbout AuthorsReferences
The paper presents data on the kinetics of strength gain of sulfur-extended asphalt concrete, as well as its moisture resistance. It is shown that the achievement of the maximum strength of sulfur-extended asphalt concrete is completed on the 6-7th day. Moreover, the value of strength and the rate of its gain depend on the sulfur content: the maximum values and rate of strength gain are characteristic of sulfur-extended asphalt concrete containing 40% sulfur. It has been experimentally established that the replacement of technical sulfur bitumen by 20–40% leads to a decrease in the coefficient of moisture resistance of sulfur-extended asphalt concrete with prolonged water saturation. Kinetic and energy parameters of the process destruction of asphalt concrete and sulfur-extended asphalt concrete have been calculated. It is shown that the use of sulfur increases the sensitivity of the structure of sulfur-extended asphalt concrete to water. The main hypotheses of a decrease in the moisture resistance of sulfur-extended asphalt concrete are formulated: physicochemical hypothesis, chemical hypothesis and complex hypothesis.
H.T. LE1, graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. GLADKIKH1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOROLEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.N. GRISHINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Saint Petersburg State University of Architecture and Civil Engineering (4, Vtoraya Krasnoarmeiskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Vasil’yev Yu.E., Ivachev A.V., Bratishchev I.S. Investigation of the stability of road-building materials to wear rutting under conditions close to operational. Vestnik yevraziyskoy nauki. 2014. No. 5 (24), p. 20. (In Russian).
2. Kotlyarskiy E.V., Gridchin A.M., Lesovik R.V. Faktory, sposobstvuyushchie razrusheniyu struktury asfal’tobetona v protsesse ekspluatatsii dorozhnykh asfal’tobetonnykh pokrytii [Factors contributing to the destruction of the structure of asphalt concrete during the operation of road asphalt pavements]. Belgorod: BSTU. 2012. 187 p.
3. Gladkikh V, Korolev E and Smirnov V. Structure and physical properties of sulfur with nanoscale carbon modifiers. E3S Web of Conferences 91. 2019. 07014. https://doi.org/10.1051/e3sconf/20199107014
4. Turayev F.T., Beknazarov K.S., Dzhalilov A.T. Study of the modification of road bitumen with elemental sulfuric. Universum: tekhnicheskiye nauki. 2019. No. 2 (59), pp. 65–69. (In Russian).
5. Gladkikh V., Korolev E., Husid D., Sukhachev I. Properties of sulfur- extended asphalt concrete. MATEC Web of Conferences IPICSE. 2016. 86. DOI: 10.1051/matecconf/20168604024
6. Vasiliev Yu.E. Methodological fundamentals of automation of processes of industrial production of sulfur-asphalt concrete mixtures with optimization of the components of the mineral part according to particle size distribution. Diss. Dr. of Sciences (Engineering). Moscow. 2012. 337 p.
7. Yang R., Ozer H., Ouyang Y., Alarfaj A., Islam K., Khan M.I., Khan K.M., and Shalabi F.I. Life-cycle assessment of using sulfur-extended asphalt (sea) in pavements. Airfield and Highway Pavements. 2019, pp. 183–192. DOI: 10.1061/9780784482476.020
8. Andronov S.Y., Vasiliev Y.E., Timokhin D.K., Repin  A.M., Repina O.V. and Talalay V.V. Production and use of sulfur-asphalt composite coatings on roads and bridges. Internet-zhurnal «NAUKOVEDENIE». 2016. Vol. 8. No. 3. http://naukovedenie.ru/PDF/104TVN316.pdf
9. Yeoh D., Boon Koh Heng, Jamaluddin N. Exploratory study on the mechanical and physical properties of concrete containing sulfur. Journal Technology Sciences & Engineering. 2015. 77:32, pp. 179–188. DOI: 10.11113/jt.v77.7009
10. Pat. 2585540 United States. A method providing for a low release of H2S during the preparation of sulfur-extended asphalt. Majid Jamshed Chughtai, Helen Jayne Davies, Richard Walter May and David Strickland. Publ. 05.01.2013.
11. Gladkikh V.A., Korolev E.V. Suppressing the hydrogen sulfide and sulfur dioxide emission from sulfur-bituminous concrete. Advanced Materials Research. 2014. Vol. 1040, pp. 387–392. https://doi.org/10.4028/www.scientific.net/AMR.1040.387
12. Pat. 3960585 United States. Reducing H2S-emission from hot cast sulfur-asphalt mixtures. Publ. 06.01.1976.
13. Timm D., Tran N., Taylor A., Robbins M., Powell R. Evaluation of mixture performance and structural capacity of pavements using shell Thiopave®. Report No. 09-05. National Center for Asphalt Technology. Auburn University. 2009.
14. Gladkikh V.A. Sulfur-asphalt concrete modified with a complex additive based on technical sulfur and neutralizing agents for the emission of toxic gases. Diss. Cand. (Engineering). Moscow. 2015. 222 p. (In Russian).
15. Israilova Z.S., Tsamayeva P.S., Strakhova N.A. The effect of the chemical composition of bitumen on the water resistance of asphalt concrete. Estestvennye i tekhnicheskie nauki. 2008. No. 5 (37), pp. 246–248. (In Russian).
16. Erofeev V.T., Likomaskina M.A. Evaluation of the durability of asphalt concrete when tested in climatic conditions with variable humidity, ultraviolet irradiation and aggressive sea water. Vestnik MGSU. 2016. No. 6, pp. 63–79. (In Russian).
17. Nikonova O.N., Duka O.A., Rudenskiy A.V. Increasing the water resistance of road asphalt concrete by the introduction of powdered activators. Stroitel’nye Materialy [Construction Materials]. 2009. No. 5, pp. 21–23. (In Russian).
18. Zolotarev V.A., Kudryavtseva S.V., Yefremov S.V., Ageyeva Ye.N. The combined effect of polymers and surfactants on the adhesion of bitumen and water resistance of asphalt concrete. Nauka i tekhnika v dorozhnoi otrasli. 2007. No. 3 (42), pp. 33–35. (In Russian).
19. Gladkikh V., Korolev E.V., Gladkikh V.G. Green sulfur-extended asphalt concrete: mix design of the complex binder. MATEC Web of Conferences. 2016. Vol. 86:04023. p. 6. https://doi.org/10.1051/matecconf/20168604023
20. Korolev E.V., Bazhenov Yu.M., Albakasov A.I. Radiatsionno-zashchitnyye i khimicheski stoykiye sernyye stroitel’nyye materialy [Radiation-protective and chemically resistant sulfur building materials]. Penza, Orenburg: IPK OSU, 2010. 364 p.

For citation: Le H.T., Gladkikh V.A., Korolev E.V., Grishina A.N. Moisture resistance of sulfur-extended asphalt concrete. Results of the study and features of definition. Stroitel’nye Materialy [Construction Materials]. 2021. No. 3, pp. 39–44. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-789-3-39-44


Print   Email