knauf b1


Influence of Modern Facade Coatings on The Value of the Weighted Average Albedo of the Building Façade

Number of journal: 6-2021
Autors:

Korkina E.V.,
Shmarov I.A.,
Tyulenev M.D.

DOI: https://doi.org/10.31659/0585-430X-2021-792-6-33-40
УДК: 692.82

 

AbstractAbout AuthorsReferences
When designing buildings, methods are applied aimed at energy saving, with special attention paid to ensuring a comfortable indoor environment. One of the important components of comfort is a sufficient level of natural light, which is normalized by the coefficient of natural light. When calculating the coefficient of natural light, the reflection of solar radiation in the visible range from the facade of the opposing building facing the studied facade is taken into account. In addition, methods are currently being developed to take into account the reflection of solar radiation in the entire range of solar radiation. However, insufficient reference data was found on the reflection of solar radiation in the visible and in the entire range of various facade coatings. In this work, such studies are carried out, and their influence on the value of the weighted average reflection coefficient of the facade in the visible region and the weighted average albedo of the facade in the entire range of solar radiation is determined.
E.V. KORKINA1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.A. SHMAROV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.D. TYULENEV2, postgraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics of the Russian Academy of Architecture and Construction (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Esquivias P.M., Moreno D., Navarro J. Solar radiation entering through openings: Coupled assessment of luminous and thermal aspects. Energy and Buildings. 2018. Vol. 175, pp. 208–218. DOI: https://doi.org/10.1016/j.enbuild.2018.07.021
2. Kontoleon K.J. Energy saving assessment in buildings with varying façade orientations and types of glazing systems when exposed to sun. International Journal of Performability Engineering. 2013. Vol. 9. No. 1, pp. 33–48.
3. Korkina E.V., Shmarov I.A., Tyulenev M.D. Effectiveness of energy-saving glazing in various climatic zones of Russia. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 869 (7). 072010. DOI: https://doi.org/10.1088/1757-899X/869/7/072010
4. Yunsong Han, Hong Yu, Cheng Sun. Simulation-based multiobjective optimization of timber-glass residential buildings in severe cold regions. Sustainability. 2017. Vol. 9 (12). 2353. DOI: https://doi.org/10.3390/su9122353
5. Zubarev K.P., Gagarin V.G. Determining the coefficient of mineral wool vapor permeability in vertical position. Advances in Intelligent Systems and Computing. 2021. Vol. 1259, pp. 593–600. DOI: https://doi.org/10.1007/978-3-030-57453-6_56
6. Соловьёв А.К. Оценка освещения помещений с применением теории светового поля // Свето-техника. 2013. № 4. С. 66–68.
6. Solovev A.K. Assessment of indoor lighting using light field theory. Svetotekhnika. 2013. No. 4, pp. 66–68. (In Russian).
7. Cheng Sun, Qianqian Liu and Yunsong Han. Many-objective optimization design of a public building for energy, daylighting and cost performance improve-ment. Applied Sciences. 2020. Vol. 10 (7). 2435. DOI: https://doi.org/10.3390/app10072435
8. Mardaljevic J., and Christoffersen J. A. Roadmap for upgrading national/eu standards for daylight in buildings. Proceedings of the CIE Centenary Conference. Paris. 2013, pp. 178–187.
9. Nguyen P.T.K., Solovyov A.K., Pham T.H.H., Dong K.H. Confirmed method for definition of daylight climate for tropical Hanoi. Advances in Intelligent Systems and Computing. 2020. Vol. 982, pp. 35–47. DOI: https://doi.org/10.1007/978-3-030-19756-8_4
10. Brembilla E., Mardaljevic J. Climate-Based Daylight Modelling for compliance verification: Benchmarking multiple state-of-the-art methods. Building and Environment. 2019. Vol. 158, pp. 151–164. DOI: https://doi.org/10.1016/j.buildenv.2019.04.051
11. Zemtsov V., Korkina, E., Zemtsov V. Relative brightness of facades in the L-shaped urban buildings. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 896. 012027. DOI: https://doi.org/10.1088/1757-899X/896/1/012027
12. Куприянов, В.Н., Халикова Ф.Р. Пропускание ультрафиолетовой радиации оконными стеклами при различных углах падения луча // Жилищное строительство. 2012. № 6. С. 64–65.
12. Kupriyanov, V.N., Khalikova F.R. Transmission of ultraviolet radiation by window panes at different angles of incidence of the beam. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 6, pp. 64–65. (In Russian).
13. Стецкий С.В., Ларионова К.О. Расчет естественной освещенности помещений с системой верхнего естественного освещения с учетом светотехнического влияния окружающей застройки // Вестник МГСУ. 2014. №12. С. 20–30. DOI: https://doi.org/10.22227/1997-0935.2014.12.20-30
13. Stetskii S.V., Larionova K.O. Calculation of natural illumination of rooms with an overhead natural lighting system, taking into account the lighting influence of the surrounding buildings. Vestnik MGSU. 2014. No. 12, pp. 20–30. (In Russian). DOI: https://doi.org/10.22227/1997-0935.2014.12.20-30
14. Соловьёв А.К. Зеркальные фасады: их влияние на освещение противостоящих зданий // Свето-техника. 2017. № 2. С. 28–31.
14. Solov’ev A.K. Mirrored facades: their effect on the lighting of opposing buildings. Svetotekhnika. 2017. No. 2, pp. 28–31. (In Russian).
15. Zhang Y., Long E., Li Y., Li P. Solar radiation reflective coating material on building envelopes: Heat transfer analysis and cooling energy saving. Energy Exploration & Exploitation. 2017, pp. 1–19. DOI: https://doi.org/10.1177/0144598717716285
16. Коркина Е.В., Шмаров И.А. Аналитический метод расчета рассеянной солнечной радиации, поступающей на вертикальную поверхность при частично перекрытом небосводе // Известия высших учебных заведений. Технология текстильной промышленности. 2018. № 3 (375). С. 230–236.
16. Korkina E.V., Shmarov I.A. Analytical method of calculation of the diffuse solar radiation received on a vertical surface with partially. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi pro-myshlennosti. 2018. No. 3 (375), pp. 230–236. (In Russian).
17. Ivanova S.M. Estimation of background diffuse irradiance on orthogonal surfaces under partially obstructed anisotropic sky. Part 1 – Vertical surfaces. Solar Energy. 2013. Vol. 95, pp. 376–391. DOI: https://doi.org/10.1016/j.solener.2013.01.021
18. Коркина Е.В., Шмаров И.А., Земцов В.А., Тюленев М.Д. Аналитический метод расчета отраженной от фасада противостоящего здания солнечной радиации // Известия высших учебных заведений. Технология текстильной промышленности. 2019. № 4 (382). С. 189-196.
18. Korkina E.V., Shmarov I.A., Zemtsov V.A., Tyulenev M.D. Analytical method of calculation of the reflected solar radiation from the facade of the opposing building. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2019. No. 4 (382), pp. 189–196. (In Russian).

For citation: Korkina E.V., Shmarov I.A., Tyulenev M.D. Influence of modern facade coatings on the value of the weighted average albedo of the building façade. Stroitel’nye Materialy [Construction Materials]. 2021. No. 6, pp. 33–40. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-792-6-33-40


Print   Email