Forecasting Strength Cement Composites with Graphene Oxide by Finite Element Method

Number of journal: 1-2-2021
Autors:

Scryabin A.P.,
Fedorova G.D.

DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-91-97
УДК: 666.9.031: 539.2

 

AbstractAbout AuthorsReferences
Possibility of connection between molecular and structural mechanics of cement composites based on brand of Portland cement PC 500 D0 Н of cement plant JSC “Yakutcement” (С3А = 6,98%, normal consistency of a cement paste = 26,25%) and graphene oxide suspension prepared in accordance with the Ammosov North-Eastern Federal University (NEFU) “Graphene technologies” laboratory production procedures is investigated. For developing a forecasting technique theory, a scheme for averaging the interatomic bonds properties to obtain the stress-strain characteristics of a cement with graphene oxide sheets with further homogenization and calculation of the cement composite macromodel using the finite element method was developed. To determine the convergence, Ansys 2020 R1 software and empirical results of previously conducted experiments of the NEFU Department of Industrial and Civil Engineering were used. It was found that the homogenized model has a tensile strength of 48.8 MPa, and the actual samples have a compressive strength of 58 to 62 MPa. Thus, this forecasting theory requires significant refinement and verification on empirical data. To carry out such research, it is necessary to create an interdisciplinary universal scientific group from among post-graduate students of the Chemistry, Mathematics, and Construction Materials Departments.
A.P. SCRYABIN, Master (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.D. FEDOROVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

North-Eastern Federal University in Yakutsk (58, Belinskogo Street, Yakutsk, 677000, Russian Federation)

1. Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chemical Society Review. 2010. Vol. 39, рp. 228–240. DOI: 10.1039/b917103g
2. Ovid’ko I.A. Mechanical properties of graphene. Reviews on Advanced Materials Science. 2013. Vol. 34. No. 1, pp. 1–11. http://www.ipme.ru/e-journals/RAMS/no_13413/01_13413_ovidko.pdf
3. Kim Y., Lee, J., Yeom M.S., Shin J.W. and etc. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nature Communications. 2013. No. 4. http://dx.doi.org/10.1038/ncomms3114
4. Bartolucci S.F., Paras J., Rafiee M.A. and etc. Graphene-aluminum composites. Materials Science and Engineering: A. 2011. Vol. 528, pp. 7933–7937. http://dx.doi.org/10.1016/j.msea.2011.07.043
5. Wang J., Li Z., Fan G., Pang H., Chen Z. and Zhang D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia. 2012. Vol. 66, pp. 594–597. http://dx.doi.org/10.1016/j.scriptamat.2012.01.012
6. Koltsova T.S., Nasibulina L.I., Anoshkin I.V. and etc. New hybrid copper composite materials based on carbon nanostructures. Journal of Materials Science and Engineering: B. 2012. No. 2, pp. 240–246.
7. Fedorova G.D., Baishev K.F., Scryabin A.P. Graphene oxide as a promising nanomaterial for cement. Nauchnoe obozrenie. 2017. No. 12, pp. 36–41. (In Russian).
8. Fedorova G.D., Alexandrov G.N., Scryabin A.P., Baishev K.F. Influence of grapheme oxide on compressive strength of cement paste. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 11–17. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-11-17
9. Fedorova G.D., Skriabin A.P., Aleksandrov G.N. The study of the influence of graphene oxide on the strength of cement stone using river sand. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 16–22. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22
10. Fedorova G.D., Aleksandrov G.N., Scryabin A.P. Activa-tion of structure-forming properties of graphene oxide in cement composites. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 17–23. DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-17-23
11. Peng Hui, Ge Yaping, Cai C.S. etc. Mechanical properties and microstructure of grapheme oxide cement-based composites. Construction and Building Materials. 2019. Vol. 194, pp. 102–109. https://doi. org/10.1016/j.conbuildmat.2018.10.234
12. Wu-Jian Long, Jing-Jie Wei, Feng Xing etc. Enhanced dynamic mechanical properties of cement paste modified with graphene oxide nanosheets and its reinforcing mechanism. Cement and Concrete Composites. 2018. Vol. 93, pp. 127–139. https://doi. org/10.1016/j.cemconcomp.2018.07.001
13. Zhao Li, Guo Xinli, Liu Yuanyuan, Zhao Yuhong etc. Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites. Construction and Building Materials. 2018. Vol. 190, pp. 150–163. https://doi.org/10.1016/j. conbuildmat.2018.09.105
14. Nasedkin A.V. Finite element homogenization of nanostructured piezoelectric composites with interface phase boundaries. Materials of Xth All-Russian conference on mechanics of deformable solid body. Samara: SSTU. 2017. Vol. 2, pp. 98–101. (In Russian).
15. Sokolov A.P., Pershin A. Ya., Kozov A.V., Kirillov N.D. Homogenization of multilevel multicomponent heterogeneous structures for determining the physical and mechanical characteristics of composites. Physical Mesomechanics. 2018. Vol. 21. No. 5, pp. 90–107. (In Russian)
16. Semenov B.N. Finite-element models of mechanical characteristics of “(nano)metal-graphene” nanocomposites. Materials Physics and Mechanics. 2017. Vol. 30. No. 1, pp. 86–92. (In Russian).
17. Fedorova G.D., Alexandrov G.N., Smagulova S.A. The study of grapheme oxide use in cement systems. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1–2, pp. 21–26.
18. Shenghua Lv, Yujuan Ma, Chaochao Qiu, Ting Sun, Jingjing Liu, Qingfang Zhou. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and Building Materials. 2013. Vol. 49, pp. 121–127. https://doi.org/10.1016/j. conbuildmat.2013.08.022
19. Min Wang, Rumin Wang, Hao Yao, Shameel Farhan, Shuirong Zhenga, Congcong Du. Study on the three di-mensional mechanism of graphene oxide nanosheets modified cement. Construction and Building Materials. 2016. Vol. 126, pp. 730–739. https://doi.org/I0.1016/j.con-buildmat.2016.09.092.
20. Min Wang, Hao Yao, Rumin Wang, Shuirong Zheng. Chemically functionalized graphene oxide as the additive for cement–matrix composite with enhanced fluidity and toughness. Construction and Building Materials. 2017. Vol. 150, pp. 150–156. https://doi.org/10.1016/j.conbuild-mat.2017.05.217
21. Pavol Lengvarský, Jozef Bocko. Prediction of young’s modulus of graphene sheets by the finite element method. American Journal of Mechanical Engineering. 2015. Vol. 3. No. 6, pp 225–229. http://pubs.sciepub.com/ajme/3/6/14
22. Nyapshaev I., Shcherbin B., Ankudinov A. and etc. Mechanical properties of nanowires based on Mg3Si2O5(OH)4. Nanosistemy: fizika, khimiya, matematika. 2011. Vol. 2. No. 2, pp. 48–57. (In Russian).
23. Nesvetaev G.V., Halezin S.V. Model to predict the effect of composition factors on concrete creep coefficient. Internet-journal Naukovedenie. 2017. Vol. 9. No. 1. http://naukovedenie.ru/PDF/04TVN117.pdf (In Russian).
24. Korobov I.Yu., Popov S.N. Evaluation of the degree of the effect of hardening time and the influence of the clay acid reagent on the elastic-strength properties of cement stone. Aktual’nye problemy nefti i gaza. 2019. No. 4 (27), pp. 1–10. (In Russian).

For citation: Scryabin A.P., Fedorova G.D. Forecasting strength cement composites with graphene oxide by finite element method. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 91–97. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-91-97


Print   Email