Bridges between Science and Practice of Building

Number of journal: 3-2021
Autors:

Yarmakovsky V.N.

DOI: https://doi.org/10.31659/0585-430X-2021-789-3-18-35
УДК: 624

 

AbstractAbout AuthorsReferences
A brief analytical summary of the materials (reports, articles), published in the Proceedings of the International Federation for Structural Concrete (fib) Symposium “Concrete Structures for Resilient Society” [1], is given. Outstanding achievements of the world scientific researches in the field of the technologies for the building, design of the engineering constructions and their reconstruction of the following main types are noted: bridges over sea straits with length up to 52 km with underwater tunnels (China); bridges over deep gorges in the mountains (Japan); innovative technologies for reconstruction of bridges after the earthquakes (Japan); bridge reconstruction technologies (China); bridges in the fjords of Norway with structures of both the span structures and supports with using in recent decades with mainly high-strength structural lightweight concrete with use of the porous aggregates – imported production (in particular, expanded clay gravel from Belarus) instead of the equal-strength normal weight concrete with use of the natural dense aggregates – from local rocks (granite, dolomite, etc.). This is due to significantly higher durability indicators of the structural lightweight aggregate concrete (frost resistance, water resistance, and, accordingly, resistance to the permeability of chlorine ions and magnesian salts solutions of the marine environment into the porous structure of concrete). There are considered offshore platforms for oil extraction, primarily in the Northern tidal seas and the seas of the Far East also; constructive schemes of the platforms, technologies for their building; recently – the construction of individual structural parts of platforms in the coastal zone, in particular, in dry dock, with the afloating delivery to the building place of the platform. The conceptual method for offshore platforms designing that was developed by the Norwegian company (the head – Dr., prof. Tor Ole Olsen) deserves attention. This is a better and more consistent method of design in the comparison with the previous method of linear elastic analysis and nonlinear point design. The latter provides more safer and more cost-effective design, allowing simultaneous phased construction of platforms. As for the innovative technologies for creating concrete of the new most effective modifications in construction, the following are noted: – physical-chemical bases of the technologies of concrete which is resistant to the of ultra-low (up to minus 196°C) cryogenic temperatures exposure, intended mainly for use in the construction of the reinforced concrete tanks for storing of the liquefied natural gases in the coastal Arctic zone of the European continent (author’s development of the NIISF RAACS [2]); – the technology of high-strength (R28d=180 MPa) fine-grained concrete, produced by so called “powder’s technology” with ultrafine quartz powder, used by scientists and designers of China for the construction of large-span bridges (Engineering Science and Technology Research Institute, Shanghai, China) [3].
V.N. YARMAKOVSKY, Honorary Member of the Russian Academy of Architecture and Construction Sciences, Expert of the Russian Academy of Sciences, member of the International Federation for Structural Concrete (fib) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow,127238, Russian Federation)

1. Concrete Structures for Resilient Society. Edited by Bin Zhao and Xin-lin Lu. Proceedings of the fib Symposium 2020, 22 to 24 November, 2020. Shanghai.
2. Yarmakovsky V.N., Kadiev D.Z. Physical-chemical and technological bases of concrete resistance to the ultra-low cryogenic (up to -196оС) technical temperatures. Proceedings of the fib Symposium 2020 «Concrete Structures for Resilient Society». Edited by Bin Zhao and Xinlin Lu. Shanghai, 2020. pp. 2139–2146.
3. Liang Y., Wang C. Effect of the ultrafine quartz powder on UHPC properties of steel-concrete composite bridge deck. Proceedings of the fib Symposium 2020 «Concrete Structures for Resilient Society». Edited by Bin Zhao and Xinlin Lu. Shanghai, 2020. pp. 46–51.
4. Spitzner J.A. Review of the development of lightweight aggregate concrete – History and Actual Survey. International Symposium on Structural Lightweight Aggregate Concrete. Sandefjord. Norway. 2000, pp. 13–22.
5. Ярмаковский В.Н. Физико-химические и структурно-технологические основы получения высокопрочных и высокодолговечных конструкционных легких бетонов // Строительные материалы. 2016. № 6. С. 6–11.
5. Yarmakovsky V.N. Physical-chemical and structural-technological bases of producing high-strength and high-durable structural light-weight concretes. Соnstruction Materials [Stroitel’nye Materialy]. 2016. No. 6, pp. 6–11. (In Russian).
6. Yarmakovsky V.N. New types of the porous slag aggregates and lightweight concretes with their application. Proceedings of International Symposium on Structural Lightweight Aggregate Concrete. Sandefjord. Norway, 1995, pp. 363–372.
7. Ikeda S. Development of lightweight aggregate concrete in Japan .Proceedings of International Symposium on Structural Lightweight Aggregate Concrete. Sandefjord, Norway. 1995, pp. 42–51.
8. Holm T.A. Long-term Service Performance of lightweight aggregate concrete bridge structures. Proceedings of International Symposium on Structural Lightweight Aggregate Concrete. Sandefiord. Norway. 1995, pp. 22–31.
9. Hoff G.C., Nunez R.E., Walum R. The Use of structural lightweight aggregates in offshore concrete platforms. Proceedings of International Symposium on Structural Lightweight Aggregate Concrete. Sandefiord. Norway. 1995, pp. 349–362.
10. Bremner T.W., Holm T.A. Aggregate-matrix interaction in concrete subject to severe exposure. Proceedings of FIP-CPCI International Symposium on Concrete Sea Structures in Arctic Regions. Calgary, Canada. 1984.
11. Бремнер Т.У. (Нью-Брансуик, Канада), Ярмаков-ский В.Н. Легкий бетон: настоящее и будущее. Перспективные области применения конструкционных легких бетонов // Cтроительный эксперт. 2005. № 21 (2008). С. 5–7.
11. Bremner T.U. (New Brunswick, Kanada), Yarmakovskiy V.N. Light-weight concrete: present and future. Promising areas of application of structural lightweight concretes. Construction Expert. 2005. No. 21 (2008), pp. 5–7. (In Russian).
12. Bardhan-Roy B.K. Lightweight aggregate concrete in UK. Proceedings of International Symposium on Structural Lightweight Aggregate Concrete. Sandefiord. Norway, 1995, pp. 52–70.
13. Helgesen K.H. Lightweight aggregate concrete in Norway. Proceedings of International Symposium on Structural Lightweight Aggregate Concrete. Sandefiord. Norway. 1995, pp. 70–81.
14. FIP Manual of lightweight aggregate concrete. Surrey University Press. 1983. 259 p.
15. Arnould M. et Virlogeux M. Granulats et betons legers. Presses De L’Ecole Nationale Des Ponts Et Chausses. Paris. 1986. 513 p.
16. Петров В.П., Макридин Н.И., Ярмаковский В.Н., Соколова Ю.А. Технология и материаловеде-ние пористых заполнителей и легких бетонов. М.: Палеотип, 2013. 331 c.
16. Petrov V.P, Makridin N.I., Yarmakovsky V.N. Tekhnologiya i materialovedenie poristyh zapolniteley i legkih betonov [Technology and materials science of porous aggregates and lightweight concrete]. Moscow: Paleotip, 2013. 331 p.
17. Патент РФ на изобретение 2421421. Модификатор бетона и способ его получения. Ярмаковский В.Н., Торпищев Ш.К., Торпищев Ф.Ш. / Заявл. 27.10.2009. Опубл. 20.06.2011. Бюл. № 17.
17. Patent RF for invention 2421421. Concrete modifier and method of its preparation. Yarmakovsky V.N., Torpishchev Sh.K., Torpishchev F.Sh. Declared 27.10.2009. Publ. 20.06.2011. Bul. No. 17.
18. Москвин В.М., Савицкий А.Н., Ярмаковский В.М. Бетоны для строительства в суровых климатических условиях. Л.: Стройиздат, 1973. 169 с.
18. Moskvin V.M., Savickiy A.N., Yarmakovsky V.M. Betony dlya stroitel’stva v surovyh klimaticheskih usloviyah [Concrete for construction in severe climatic conditions]. Leningrad: Stroyizdat, 1973. 169 p.
19. Голубых Н.Д. Методы оценки стойкости бетона в суровых климатических условиях и агрессивной среде. Дис. … канд. техн. наук. М., 1975.
19. Golubykh N.D. Metody ocenki stoykosti betona v surovyh klimaticheskih usloviyah i agressivnoy srede [Methods for assessing the resistance of concrete in harsh climatic conditions and aggressive environment]. Cand. Diss. (Engineering). Moscow. 1975. (In Russian).
20. Ярмаковский В.Н. Прочностные и деформативные характеристики бетона при низких отрицательных температурах // Бетон и железобетон. 1971. № 10.
20. Yarmakovsky V.N. Strength and deformation characteristics of concrete at low negative temperatures. Beton i zhelezobeton [Concrete and reinforced concrete]. 1971. No. 10, pp. 9–15. (In Russian).
21. Карпенко Н.И., Ярмаковский В.Н. Конструк-ционные легкие бетоны для нефтедобывающих платформ в Северных приливных морях и морях Дальнего Востока // Вестник Инженерной школы Дальневосточного федерального университета. 2015. № 2 (23) С. 16–21.
21. Karpenko N.I., Yarmakovsky V.N. Structural lightweight aggregate concrete for oil production platforms in the Northern Tidal Seas and the seas of the Far East. Vestnik inzhenernoy shkoly Dal’nevostochnogo Federal’nogo Universiteta. 2015. No. 2 (23), pp. 16–21. (In Russian).
22. Kumar S. Innovative prefabricated construction of a 58 level building in Melbourne Australia. Proceedings of the fib Symposium 2020 «Concrete Structures for Resilient Society». Shanghai. 2020, pp. 1729–1736.
23. Vantyghem G., Ooms T., De Corte W. FEM modelling techniques for simulation of 3D concrete printing. Proceedings of the fib Symposium 2020 «Concrete Structures for Resilient Society». Shanghai. 2020, pp. 1021–1028.
24. Xiang-Lin Gu. Modeling the effect of fatigue damage on chloride diffusion coefficient of concrete. Proceedings of the fib Symposium 2020 «Concrete Structures for Resilient Society». Shanghai. 2020, pp. 2147–2156.
25. Zhao X. Numerical simulation of dual time-dependent chloride diffusion in concrete with ANSYS. Proceedings of the fib Symposium 2020 «Concrete Structures for Resilient Society. Shanghai. 2020, pp. 2179–2187.
26. Elshina L.I., Yarmakovsky V.N. Scientific assistance of hazardous construction in Russian Arctic region. American Concrete Institute “SP-326. Durability and Sustainability of Concrete Structures – 2nd Workshop Proceedings”. 2018, pp. 921–930.

For citation: Yarmakovsky V.N. Bridges between science and practice of building. Stroitel’nye Materialy [Construction Materials]. 2021. No. 3, pp. 18–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-789-3-18-35


Print   Email