Application of Composite Binders and Carbon Nanomaterial for Aerated Concrete

Number of journal: 1-2-2021
Autors:

Lkhasaranov S.A.,
Urkhanova L.A.,
Smirnyagina N.N.,
Nazarova K.Kh.

DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-30-35
УДК: 691.327.332

 

AbstractAbout AuthorsReferences
The article presents the results of research on the production of composite binders using Portland cement and fly ash. The composite binder is produced by co-grinding of Portland cement and fly ash. The carbon nanomaterial was used, obtained by the plasma-chemical method on high production apparatus to modify the composite binder and aerated concrete on its basis. The modified carbon nanomaterial obtained by adding Portland cement to the plasma-chemical synthesis process was used in the study. Replacing a part of Portland cement with fly ash in a composite binder contributes to the additional formation of calcium hydrosilicates due to the binding of portlandite. The use of carbon nanomaterial increases the strength of both the ordinary Portland cement and the composite binder. Infrared spectroscopic data on cement and composite binder indicate additional formation of calcium hydrosilicates when fly ash is used. Compositions of non-autoclaved aerated concrete with the use of a composite binder and carbon nanomaterial with improved physical and mechanical properties have been investigated. Indicators of strength, thermal conductivity and shrinkage during drying of aerated concrete compositions have been determined. With the use of electron microscopic analysis, a change in the structure of the porosity of aerated concrete is shown when using a composite binder with fly ash and carbon nanomaterial. A quantitative assessment of the porosity of aerated concrete was carried out, which proves the change in the size and uniformity of the pore distribution.
S.A. LKHASARANOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.A. URKHANOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.N. SMIRNYAGINA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.Kh. NAZAROVA, Еngineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

East Siberia State University of Technology and Management (40B, Klyuchevskaya Street, Ulan-Ude, 670013, Russian Federation)

1. Bazhenov Yu. M., Aleksandrova O.V., Nguyen Duc Vinh Quang, Bulgakov B.I., Larsen O.A., Gal’tse-va N.A., Golotenko D.S. High-performance concrete produced with locally available materials in Vietnam. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 32–38. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-32-3
2. Lesovik V.S., Absimetov M.V., Elistratkin M.Yu., Pospelova M.A., Shatalova S.V. To the question of studying the peculiarities of structure formation of composite binders for non-autoclave aerated concrete. Stroitel’nye materialy i izdelija. 2019. Vol. 2. No. 3, pp. 41–47. (In Russian).
3. Krasinikova N.M., Kirillova E.V., Khozin V.G. Reuse of concrete waste as input products for cement concretes. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 56–65. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-56-65
4. Fediuk R., Baranov A., Mosaberpanah M., Lesovik V. Link of self-compacting fiber concrete behaviors to composite binders and superplasticizer. Journal of Advanced Concrete Technology. 2020. Vol. 18. No. 3. pp. 67–82. DOI: 10.3151/jact.18.54
5. Toturbiev B.D., Mamaev S.A., Toturbiev A.B. Composite binders from industrial waste. Geologija i geofizika Juga Rossii. 2019. Vol. 9. No. 4, pp. 140–148. DOI: 10.23671/VNC.2019.4.44539 (In Russian).
6. Fedorova G.D., Skriabin A.P., Aleksandrov G.N. The study of the influence of graphene oxide on the strength of cement stone using river sand. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 16–22. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-16-22
7. Nelyubova V.V., Podgorny I.I., Strokova V.V., Palshina Yu.V. Autoclaved aerated concrete with a nanostructured modifier of aluminosilicate composition. Stroitel’nye Materialy [Construction Materials]. 2016. No. 4, pp. 72–75. (In Russian).
8. Leontiev S.V., Golubev V.A., Shamanov V.A., Kurzanov A.D., Yakovlev G.I., Khazeev D.R. Modification of the structure of heat-insulating autoclaved aerated concrete by dispersion of multilayer carbon nanotubes. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1–2, pp. 76–83. (In Russian).
9. Chernyshov E.M., Artamonova O.V., Slavcheva G.S. Nanomodification of cement composites at the technological stage of the life cycle. Nanotekhnologii v stroitel’stve. 2020. Vol. 12. No. 3, pp. 130–139. DOI: 10.15828/2075-8545-2020-12-3-130-139. (In Russian).
10. Gusev B.V., Kudryavtseva V.D., Potapova V.A. Concretes with nano-additive from fired secondary concrete. Nanotekhnologii v stroitel’stve. 2020. Vol. 12. No. 5, pp. 245–249. DOI: 10.15828/2075-8545-2020-12-5-245-249 (In Russian).
11. Yakovlev G.I., Skripkiunas G., Polianskich, I.S., Lahayne O., Eberhardsteiner J., Urkhanova L.A., Pudov I.A., Sychugov S.V., Karpova E., Sen’kov S.A. Modification of cement matrix using carbon nanotube dispersions and nanosilica. Procedia Engineering. 2017. Vol. 172, pp. 1261–1269. DOI: 10.1016/j.proeng.2017.02.148
12. Butters V., Kowald T., Mahjoori M., Trettin R. Surface modified carbon nanotubes for an enhanced interaction with cement based binders. nanotechnology in construction. Proceedings of NICOM5. Springer, Cham. 2015,pp. 253–258. https://doi.org/10.1007/978-3-319-17088-6_32
13. Tokarev Yu.V., Volkov M.A., Ageev A.V., Kuzmina N.V., Grakhov V.P., Yakovlev G.I., Khazeev D.R. Estimation of efficiency of applying aqueous dispersion of carbon particles in anhydrite binder. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 24–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-24-35
14. Danoglidis P.A., Falara M.G., Maglohianni M. Scalable processing of cement composites reinforced with carbon nanotubes (CNT) and carbon nanofibers (CNF). Nano-tekhnologii v stroitel’stve. 2019. Vol. 11. No. 1, pp. 20–27. DOI: 10.15828/2075-8545-2019-11-1-20-27 (In Russian).
15. Danoglidis P.A., Konsta-Gdoutos M.S., Gdoutos E., Shah S.P. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars. Construction and Building Materials. 2016. Vol. 120, pp. 265–274. https://doi.org/10.1016/j.conbuildmat.2016.05.049
16. Semenov A.P., Smirnyagina N.N., Tsyrenov B.O., Dasheev D.E., Khaltarov Z.M. Plasma-chemical synthesis of carbon nanotubes and fullerenes to create frost-resistant composite building materials. Journal of Physics: Conference Series. 2017. Vol. 830. No. 1, pp. 1–5. DOI: 10.1088/1742-6596/830/1/012123
17. Suleimanova L.A., Pogorelova I.A., Suleimanov K.A. Generalized analysis of the nature of the pore structure of non-autoclaved aerated concrete on composite binders. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova. 2016. No. 3, pp. 75–79. (In Russian).

For citation: Lkhasaranov S.A., Urkhanova L.A., Smirnyagina N.N., Nazarova K.Kh. Application of composite binders and carbon nanomaterial for aerated concrete. Stroitel’nye Materialy [Construction Materials]. 2021. No. 1–2, pp. 30–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-788-1-2-30-35


Print   Email