knauf b1

Analysis of Existing Approaches to Specifying and Determining of Window Air Permeability

Number of journal: 3-2021

Konstantinov A.P.,
Aksenov I.S.

УДК: 692.829


AbstractAbout AuthorsReferences
The paper presents an analytical review of the issue of determining and assigning the air permeability of window structures. For this purpose, both the provisions of the current regulatory and technical documentation of a number of countries, as well as the results of scientific research on the subject under consideration, were considered. As a result, it was established that the current standard value of windows air permeability is specified based only on considerations of energy saving. At the same time, this characteristic is assigned for the statistically average operating conditions. The existing methods for calculating and determining the air permeability of windows don’t correspond to the real operating conditions because they don’t take into account the whole complex of climatic influences to which the windows are exposed (outside temperature variations, wind pressure pulsation). The experience of operation, as well as a number of studies conducted, shows that for the above reasons, in winter there is a significant increase in the air permeability of window structures, this leads to a violation of the comfort of the microclimate near the window (drafts, etc.). The normative value of windows air permeability specified based on the comfort conditions of microclimate should be introduced in design practice, as well as a universal calculation method for determining the air permeability of windows that meets their real operating conditions and takes into account their design features.
A.P. KONSTANTINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. AKSENOV, Master’s degree (postgraduate student)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Konstantinov A.P., Verkhovsky A.A. Influence of negative temperatures on the thermal characteristics of PVC windows. Stroitel’stvo i rekonstruktsiya. 2018. Vol. 83. No. 3, pp. 72–82. (In Russian). DOI:
2. Datsyuk T.A., Grimitlin A.M. The effect of the enclosing structure air permeability value on the energy consumption of residential building. Vestnik grazhdanskikh inzhenerov. 2017. No. 6(65), pp. 182–187. (In Russian).
3. Sayfutdinova A.M., Kupriyanov V.N. Qualitative characteristics of air exchange of premises and their dependence on space-planning and constructive solutions of buildings. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. 2014. No. 1 (27), pp. 113–118. (In Russian).
4. Kupriyanov V. N., Ivantsov A. I. Analysis of calculating methods for estimation of resistance of light-transparent constructions to heat transfer. Privolzhskij nauchnyj zhurnal. 2018. No. 1 (45), pp 33–42.
5. Korkina E.V. Criterion of Efficiency of Glass Units Replacing in the Building with the Purpose of Energy Saving. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 6, pp. 6–9. (In Russian).
6. Savin V.K., Savina N.V. Architecture and energy efficiency of a window. Stroitel’stvo i rekonstrukciya. 2015. No. 4 (60), pp. 124–130. (In Russian).
7. Semenova E.I. Vozdukhopronitsaemost’ okon zhilykh i obshchestvennykh zdanii [Air permeability of residential and public buildings windows]. Moscow: Stroiizdat, 1969. 81 p.
8. Aksenov I.S., Konstantinov A.P. Physical and technical basis for calculating the air permeability of window structures. Actual problems of the construction industry and education: National conference. Moscow. 2020, pp. 810–815. (In Russian).
9. Savin V.K. Stroitel’naya fizika: aerodinamika i teploobmen pri vzaimodeistvii potokov i strui so zdaniyami [Building physics: aerodynamics and heat transfer in the interaction of streams and jets with buildings]. Moscow: Lazur’, 2008. 480 p.
10. Thomas D.A., Dick J. B. Air infiltration through gaps around windows. JIHFE. 1953. Vol. 21. No. 214, pp. 85–97.
11. Hopkins L.P., Hansford B. Air flow through cracks. Build. Serv. Engr. 1974. Vol. 42, pp. 123–129.
12. Etheridge D., Sandberg M. Building ventilation: theory and measurement. Chichester: John Wiley & Sons. 1996, p. 754.
13. Honma H. Ventilation of Dwellings and its Disturbances. Stockholm: Faibo Grafiska. 1975.
14. Lobanov V.A. Problems of normalizing the air permeability of translucent building structures. Energy saving and ecology in construction and utilities sector, transport and industrial ecology: International conference. Moscow. 2020, pp. 101–108.
15. Savin V.K. Stroitel’naya fizika: energoperenos, energoeffektivnost’, energosberezhenie [Construction physics: energy transfer, energy efficiency, energy saving]. Moscow: Lazur’. 2005. 432 p.
16. Etheridge D.W. Crack Flow Equations and Scale Effect. Building and Environment. 1977. Vol. 12, pp. 181–189.
17. Baker P. H., Sharples S., Ward I. C. Air Flow Through Cracks. Building and Environment. 1987. Vol. 4. No. 22, pp. 293–304.
18. Chiu Y.-H., Etheridge D. W. Calculations and notes on the quadratic and power lawequations for modelling infiltration. International Journal of Ventilation. 2002. Vol. 1, pp. 65–77.
19. Etheridge D.W. A note on crack flow equations for ventilation modeling. Building and Environment. 1998. Vol. 33. No. 5, pp. 325–328.
20. Kraniotis D., Thiis T. K., Aurlien T. A Numerical study on the impact of wind gust frequency on air exchanges in buildings with variable external and internal leakages. Buildings. 2014. Vol. 4, pp. 27–42.
21. Etheridge D. Unsteady flow effects due to fluctuating wind pressures in natural ventilation design—Mean flow rates. Building and Environment. 2000. Vol. 35. No. 2, pp. 111–133.
22. Fleury G., Thomas M. Variation to window air permeability according to outside temperature. Cahiers Du Centre Scientifique et Technique Du Batiment. 1972. No. 132.
23. Elmahdy A.H. Air leakage characteristics of windows subjected to simultaneous temperature and pressure differentials. Conf. Proc. Window Innovations. 1995, pp. 146–163.
24. Air Infiltration rate of windows under temperature and pressure differentials. CANMET Report. Natural Resources Canada, 1995.
25. Henry R., Patenaude A. Measurements of Window Air Leakage at Cold Temperatures and Impact on Annual Energy Performance of a House. ASHRAE trans. 1998. Vol. 104 (1b), pp. 1254–1260.
26. Shekhovtsov A.V. Air permeabillity of an PVC-window when exposed to freezing temperatures. Vestnik MGSU. 2011. No. 3–1, pp. 263–269. (In Russian).
27. Konstantinov A., Verkhovsky A. Assessment of the Negative Temperatures Influence on the PVC Windows Air Permeability. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 753. 022092. doi:10.1088/1757-899X/753/2/022092.
28. Verkhovskiy A., Bryzgalin V., Lyubakova E. Thermal deformation of window for climatic conditions of Russia. IOP Conf. Series: Materials Science and Engineering. 2018. Vol. 463. 032048. doi:10.1088/1757-899X/463/3/032048.
29. Konstantinov A., Verkhovsky A. Assessment of the Wind and Temperature Loads Influence on the PVC Windows Deformation. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 753. 032022. doi:10.1088/1757-899X/753/3/032022.
30. Eldashov Y.А., Sesyunin S.G., Kovrov V.N. Experimental study of typical window blocks on geometric stability and reduced resistance to heat transfer from the action of thermal loads. Vestnik MGSU. 2009. No. 3, pp. 146–149. (In Russian).
31. Bursey T., Green G.H. Combined thermal and air leakage performance of double hung windows. ASHRAE trans. 1970. Vol. 76. No. 2, pp. 215–226.
32. Kehrli D.W. Window air leakage performance as a function of differential temperatures and accelerated environmental aging. Thermal performance of exterior envelopes of building III. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1985, pp. 872–890.
33. Patent RF 2445610 C1. Sposob opredeleniya vozdukhopronitsaemosti stroitel’nykh ograzhdayushchikh konstruktsii [Method for determining the air permeability of building enclosing structures]. Verkhovskii A.A., Shubin I.L., Shekhovtsov A.V. Declared 15.12.2010. Published. 20.03.2012. (In Russian).
34. Kurenkova A.Yu. Lessons from 2010, features of manufacturing window blocks from PVC with a width more than 68 mm. Svetoprozrachnye konstruktsii. 2011. No 1–2, pp. 10–12. (In Russian).
35. Verkhovsky A.A., Zimin A.N., Potapov S.S. The applicability of modern translucent walling for the climatic regions of Russia. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 6, pp. 16–19. (In Russian).
36. Vlasenko D.V. Why it warps the windows. Who is to blame and what to do? Okonnoe proizvodstvo. 2014 . No. 39, pp. 42–44. (In Russian).
37. Kalabin V.A. Assessment of PVC profile thermal deformation. Part 1. Winter transverse deformations. Svetoprozrachnye konstrukcii. 2013. No. –2, pp. 6–9. (In Russian).
38. Sesyunin S.G., Eldashov Yu.A. Modeling of a thermo elasticity conjugate problem on the example of various variants of window block structural design. Svetoprozrachnye konstruktsii: Internet-journal. 2005. No. 4. (In Russian).
39. Konstantinov A.P., Krutov A.A., Tikhomirov A.M. Assessment of the PVC windows thermal characteristics in winter. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 65–72. (In Russian). DOI:
40. Konstantinov A.P. Calculation of PVC window blocks for wind load. Perspektivy nauki. 2018. No. 1 (100), pp. 26–30. (In Russian)

For citation: Konstantinov A.P., Aksenov I.S. Analysis of existing approaches to specifying and determining of window air permeability. Stroitel’nye Materialy [Construction Materials]. 2021. No. 3, pp. 45–51. (In Russian). DOI:

Print   Email