Physical and Mechanical Properties of Concrete Using Local Secondary Raw Materials

Number of journal: 9-2020
Autors:

Sidorova A.S.
Antsupova S.G.
Popov A.L.

DOI: https://doi.org/10.31659/0585-430X-2020-784-9-9-14
УДК: 666.972.7

 

AbstractAbout AuthorsReferences
The article addresses the possibility of using in modern construction concrete rubble formed from demolition of buildings and marriage in the production of reinforced concrete products. The possibility of using crushed concrete waste as a large aggregate to improve the physical and mechanical properties of concrete has been experimentally confirmed. It has been shown that the replacement of natural gravel in the composition of concrete with secondary allows increasing its strength by 12%. An important role in the composition is played by the adhesive addition Silor Ultra T, which, in the process of solidification, equalizes the negative consequences of the increased content of dust particles in concrete received with the introduction of secondary gravel, intensifying hydration processes for a long period. Thus, studies have concluded that the properties of secondary gravel obtained from concrete rubble comply with the requirements of regulatory documents for aggregate for heavy concrete. Concrete composition of classes B25–B30 based on the secondary gravel from the concrete rubble formed at the demolition of the object of the house of Yakutsk with strength of 36,34 MPa and 39,42 MPa have been developed, which suggests the possibility of using secondary crushed stone in construction, thereby reducing the consumption of expensive natural stone materials.
A.S. SIDOROVA, Engineer (Postgraduate student)(This email address is being protected from spambots. You need JavaScript enabled to view it.)
S.G. ANTSUPOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.L. POPOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

North-Eastern Federal University (50, Kulakovskogo Street, Yakutsk, 677000, Russian Federation)

1. Garkina I.A., Danilov A.M., Korolev E.V. Evolution of representations about composite materials from the positions of changing the paradigm. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 60–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-60-62
2. Smirnov V.A., Korolev E.V. Building materials as disperse systems: multiscale modeling with dedicated software. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 43–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-43-53
3. Alaskhanov A.K., Murtazaeva T.S., Saidumov M.S., Omarov A.O. Development of compositions of filled insulators based on secondary raw for monolithic high-strength concrete. Vestnik Dagestanskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Tekhnicheskie nauki. 2019. Vol. 46. No. 3, pp. 129–138. (In Russian).
4. Murtazaev S.A.-Y., Omarov A.O., Salamanova M.S. High-strength concrete based on the use of secondary technogenic resources. Vestnik Dagestanskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Tekhnicheskie Nauki. 2018. Vol. 45. No. 1, pp. 204–213. (In Russian). DOI: https://doi.org/10.21822/2073-6185-2018-45-1-204-213
5. Saidumov M.S., Murtazaev S.A.-Y., Alaskhanov A.Kh., Dagin I.S., Nakhaev M.R. Man-made waste as a raw material base for the production of modern construction composites. Ekologia i Promyshlennost Rossii. 2019. Vol. 23. No. 7, pp. 31–35. (In Russian).DOI: https://doi.org/10.18412/1816-0395-2019-7-31-35
6. Belov V.V., Abramov D.G. Assessment of the influence of mineral wool production waste on the mechanical properties of concrete. Stroitel’nye Materialy, Oborudovanie, Tekhnologii XXI veka. 2019. No. 5–6 (244–245), pp. 33–36. (In Russian).
7. Vdovin A.A., Yakovlev G.I., Zorin A.N., Pervushin G.N. Complex industrial wastes based admixture for improved properties of fine-grained concrete. Solid State Phenomena. 2018. Vol. 276, pp. 103–109. DOI: https://doi.org/10.4028/www.scientific.net/SSP.276.103
8. Goncharova M.A., Borkov P.V., Al-Surraivi Hamid Galib Hussain. Recycling of large-capacity concrete and reinforced concrete waste in the context of realization of full life cycle contracts. Stroitel’nye Materialy [Construction Materials]. 2019. No. 12, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-777-12-52-57
9. Zyryanova V.N., Berdov G.I., Vereshchagin V.I., Lytkina E.V., Ochur-ool A.P. Serpentinite magnesial binding substances on the basis of technogenic raw materials. Izvestiya Vysshikh Uchebnykh Zavedenii. Stroitel’stvo. 2019. No. 9 (729), pp. 43–51. (In Russian). DOI: 10.32683/0536-1052-2019-729-9-43-51
10. Klyuev S.V., Khezhev T.A., Pukharenko Yu.V., Klyuev A.V. The fiber-reinforced concrete constructions experimental research. Materials Science Forum. 2018. Vol. 931, pp. 598–602. DOI: 10.4028/www.scientific.net/MSF.931.598
11. Krasinikova N.M., Kirillova E.V., Khozin V.G. Reuse of concrete waste as input products for cement concretes. Stroitel’nye Materialy [Construction Materials]. 2020. No. 1–2, pp. 56–65. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-56-65
12. Krivenko P., Kovalchuk O., Pasko A. Utilization of industrial waste water treatment residues in alkali activated cement and concretes. Key Engineering Materials. 2018. Vol. 761 KEM, pp. 35–38. DOI: 10.4028/www.scientific.net/KEM.761.35
13. Leonovich S.N., Sviridov D.V., Belanovich A.L., Karpushenkova L.S., Karpushenkov S.A. Porous ceramic material based on clay and waste of production of granite rubble. Stroitel’nye Materialy [Construction Materials]. 2019. No. 5, pp. 45–50. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-770-5-45-50
14. Magsumov A.N., Sharipyanov N.M. Use of concrete scrap as coarse aggregate for concrete mix production. Simvol Nauki. 2018. No. 6, pp. 29–33. (In Russian).
15. Makeev A.I., Chernyshov E.M. Granite crushing screenings as a component factor of concrete structure formation. Part 1. Problem definition. Identification of screenings as a component factor of structure formation. Stroitel’nye Materialy [Construction Materials]. 2018. No. 4, pp. 56–60. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-758-4-56-60
16. Strokova V.V., Zhernovskii I.V Development of the concepts of raw materials selection for the production of building composite materials. Nauchnoe Obozrenie. 2017. No. 12, pp. 12–15. (In Russian).
17. Fomina E.V., Lesovik V.S., Fomin A.E., Kozhukhova N.I., Lebedev M.S. Quality evaluation of carbonaceous industrial by-products and its effect on properties of autoclave aerated concrete. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 327. 042033. DOI: 10.1088/1757-899X/327/4/042033
18. Frolova M.A., Morozova M.V., Aizenshtadt A.M., Tutygin A.S. An aluminum-silicate binder on the basis of saponite-containing waste of diamond industry. Stroitel’nye Materialy [Construction Materials]. 2017. No. 7, pp. 68–70. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-750-7-68-70.
19. Rakhimbaev S.M., Avershina N.M. Prediction of the durability of building materials for a single test period. Stroitel’nye Materialy [Construction Materials]. 1994. No. 4, p. 17. (In Russian).
20. Rakhimbaev S.M. Kinetics of transfer in heterogeneous processes of building materials technology. Physical chemistry of building and composite materials. Collection of works. Belgorod, 1989. 160 p. (In Russian).

For citation: Sidorova A.S., Antsupova S.G., Popov A.L. Physical and mechanical properties of concrete using local secondary raw materials. Stroitel’nye Materialy [Construction Materials]. 2020. No. 9, pp. 9–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-784-9-9-14


Print   Email