Forecasting the Elasticity Modulus of Composites Based on Polymer Blends

Number of journal: 7-2020
Autors:

Askadskii A.A.,
Wang C.,
Kondrashchenko V.I.,
Zhdanova T.V.,
Matseevich T.A.

DOI: https://doi.org/10.31659/0585-430X-2020-782-7-60-66
УДК: 691.175.5/.8

 

AbstractAbout AuthorsReferences
Methods for forecasting the elastic modulus of materials based on blends of compatible and incompatible polymers are considered. These materials contain fine dispersions of one of the polymers in the polymer matrix of the other polymer. The options are analyzed: dispersion of a solid amorphous polymer of a certain chemical structure in a solid amorphous polymer matrix of a different chemical structure; the dispersion of mineral filler particles in a composite matrix based on a mixture of organic polymers. The dependences of the elastic moduli on the molar, weight, and volume fractions are determined by the van der Waals volume of the components, the molecular mass of the repeating units, and the density of the components. The dependences of the elastic modulus of blends of polyvinyl chloride with a number of polymers, including aromatic polyesters, polyether ketones, polysulfone, polycarbonate, are constructed. The greatest increase in the elastic modulus from 2400 to 3980 MPa gives polypyromellitimide anilinephthalein. The preparation of wood-polymer composites increases the elastic modulus from 2400 to 4660 MPa under tensile conditions. The introduction of a mineral filler in the form of CaCO3 leads to an increase in the modulus E to 3230 MPA with a CaCO3 content relative to the wood filler of 42%. The forecast of the elastic modulus for composites containing moso bamboo as a wood filler shows that with this content of wood filler, the elastic modulus can increase to 4400 MPa.
A.A. ASKADSKII1, 2, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
C. WANG3, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.I. KONDRASHCHENKO3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
T.V. ZHDANOVA1, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
T.A. MATSEEVICH1, Doctor of Sciences (Physics and Mathematic) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (18, Vavilova Street, Moscow, 119991, Russian Federation)
3 Russian University of Transport (9, Obrazcova Street, Moscow, 127994, Russian Federation)

1. Buthaina A. Ibrahim & Karrer M. Kadum. Influence of polymer blending on mechanical and thermal properties. Modern Applied Science. 2010. Vol. 4. No. 9, pp. 157—161.
2. Saxe P., Freeman C., Rigby D. Mechanical properties of glassy polymer blends and thermosets. Materials Design, Inc., Angel Fire, NM and San Diego, CA. LAMMPS Users’ Workshop and Symposium, Albuquerque, NM, August 8, 2013.
3. Doi M., Ohta T.J. Dynamics and rheology of complex interfaces. The Journal of Chemical Physics. 1991. Vol. 95, pp. 1242—1248.
4. Anastasiadis S.H., Gancarz I., Koberstein J.T. Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence. Macromolecules. 1988. Vol. 21 (10), pp. 2980–2987.
5. Biresaw G., Carriere C., Sammler R. Effect of temperature and molecular weight on the interfacial tension of PS PDMS blends. Rheologica Acta. 2003. Vol. 42. No. 1—2, pp. 142—147.
6. Ellingson P. C., Strand D.A., Cohen A., Sammler R.L., Carriere C.J. Molecular weight dependence of polystyrene/Poly(Methyl Methacrylate) interfacial tension probed by imbedded-fiber retraction. Macromolecules. 1994. Vol. 27. No. 6, pp. 1643—1647.
7. Gramespacher H., Meissner J. J. Interfacial tension between polymer melts measured by shear oscillations of their blends. Journal of Rheology. 1992. Vol. 36. No. 6, pp. 1127—1141.
8. Lacroix C., Bousmina M., Carreau P.J., Favis B.D., Michel A. Properties of PETG/EVA Blends: 1. Viscoelastic, Morphological and Interfacial Properties. Polymer. 1996. Vol. 37. No. 14, pp. 2939—2947.
9. Li R., Yu W., Zhou C.J. Rheological characterization of droplet-matrix versus co-continous morphology. Journal of Macromolecular Science. Sci. Series B. Physics. 2006. Vol. 45. No. 5, pp. 889—898.
10. Chopra D., Kontopoulou M., Vlassopoulos D., Hatzikiriakos S.G. Effect of maleic anhydride content on the rheology and phase behavior of poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. Rheologica Acta. 2001. Vol. 41, pp. 10—24.
11. Guenther G.K., Baird D.G. An evaluation of the Doi-Ohta theory for an immiscible polymer blend. Journal of Rheology. 1996. Vol. 40. No. 1, pp. 1—20.
12. Hashimoto T., Takenaka M., Jinnai H. Scattering studies of self-assembling processes of polymer blends in spinodal decomposition. Journal of Applied Crystallography. 1991. Vol. 24, pp. 457—466.
13. Аскадский А.А., Попова М.Н., Кондращенко В.И. Физико-химия полимерных материалов и методы их исследования. М.: АСВ, 2015, 407 с.
13. Askadskiy A.A., Popova M.N., Kondrashchenko V.I. Fiziko-khimiya polimernykh materialov i metody ikh issledovaniya. [Physical chemistry of polymer materials and methods for their research]. Moscow: ASV Publishing House. 2015. 407 p.
14. Аскадский А.А., Ван С., Курская Е.А., Кондращенко В.И., Жданова Т.В., Мацеевич Т.А. Возможности предсказания коэффициента термического расширения материалов на основе поливинилхлорида // Строительные материалы. 2019. № 11. С. 57–65. DOI: https://doi. org/10.31659/0585-430X-2019-776-11-57-65
14. Askadskiy A.A., Wang C., Kurskaya E.A., Kondrashchenko V.I., Zhdanova T.V., Matseevich T.A. Possibilities for predicting the coefficient of thermal expansion of materials based on polyvinyl chloride. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 57–65. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-57-65
15. Bicerano J. Prediction of polymer properties. New-York, Marcel Dekker, Inc., 1996. 669 p.
16. Болобова А.В., Аскадский А.А., Кондращенко В.И., Рабинович М.Л. Теоретические основы биотехнологии древесных композитов. Ферменты, модели, процессы. М.: Наука, 2002. 343 с.
16. Bolobova A.V., Askadskii A.A., Kondrashchenko V.I., Rabinovich M.L. Teoreticheskie osnovy biotekhnologii drevesnykh kompozitov. Fermenty, modeli, protsessy. [Theoretical foundations of biotechnology of wood composites. Enzymes, models, processes]. Moscow: Nauka. 2002. 343 p.
17. Azeez M.A., Orege J.I. Bamboo, its chemical modification and products [J]. Bamboo: Current and Future Prospects, 2018: 25.
18. Li X. Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. 2004. LSU Master’s Theses. 866 p.

For citation: Askadskii A.A., Wang C., Kondrashchenko V.I., Zhdanova T.V., Matseevich T.A. Forecasting the elasticity modulus of composites based on polymer blends. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 60–66. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-60-66


Print   Email