Experimental Determination of the Vapor Permeability Coefficient of a Sample of Building Material in Vertical Position

Number of journal: 6-2020
Autors:

Zubarev K.P.

DOI: https://doi.org/10.31659/0585-430X-2020-781-6-59-64
УДК: 675.017.623

 

AbstractAbout AuthorsReferences
Calculations of the moisture transfer require an experimental data of the moisture diffusion coefficients. Moisture transfer mathematical models often use a permeability coefficient as the main factor, which influences the moisture behaviour inside enclosing structures. However, the wet cup method is used for experimental determining permeability coefficients of construction materials. In this method sample of a building material is located in horizontal position, but in a construction industry, there are a lot of enclosing structures which have vertical position. In a current article, a comparison of permeability coefficients of mineral wool insulation for vertical and horizontal positions of samples was made. For that, a new experimental device which has L-type of installation housing and relative humidity sensors installing along the device heights was built. This device allows to obtain the exact value of permeability coefficients for different construction materials in vertical position. Eight experiments with the new device and the same number of experiments by wet cup method were carried out to make a comparison, then statistics methods were used to work with experimental data. The Shapiro Wilk test and Student criterion were used to process the experimental data. As a result, it was discovered that the permeability coefficients of mineral wool in horizontal and vertical positions do not have any differences. The mineral wool insulation was chosen, because it has one of the biggest permeability coefficient from all the construction materials. It proved that the permeability coefficients of mineral wool insulation and other construction materials with less permeability coefficients than mineral wool can be obtained by wet cup method and can be used for vertical enclosing structures without additional refinement coefficients.
K.P. ZUBAREV1, 2, Candidate of Science (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Мусорина Т.А., Петриченко М.Р. Математическая модель тепломассопереноса в пористом теле // Строительство: наука и образование. 2018. Т. 8. № 3. С. 35–53. DOI: 10.22227/2305-5502.2018.3.3
1. Musorina T.A., Petrichenko M.R. Mathematical model of heat and mass transfer in porous body. Stroitel’stvo: nauka i obrazovanie. 2018. Vol. 8. No. 3, pp. 35–53. (In Russian). DOI: 10.22227/2305-5502.2018.3.3
2. Мусорина Т.А., Заборова Д.Д., Петриченко М.Р. Математический аппарат для определения термического сопротивления однородной скалярной среды // Вестник МГСУ. 2019. Т. 14. № 8. С. 1037–1045. DOI: 10.22227/1997-0935.2019.8.1037-1045
2. Musorina T.A., Zaborova D.D., Petrichenko M.R. Mathematical apparatus for determination of homogenous scalar medium thermal resistance. Vestnik MGSU. 2019. Vol. 14. No. 8, pp. 1037–1045. (In Russian) DOI: 10.22227/1997-0935.2019.8.1037-1045
3. Гагарин В.Г., Пастушков П.П. Методика определения суммарного сопротивления паропроницанию наружных отделочных слоев фасадных теплоизоляционных композиционных систем с наружными штукатурными слоями // Вестник МГСУ. 2012. № 11. С. 140–143.
3. Gagarin V.G., Pastushkov P.P. Methodology of identification of the overall water vapour permeability resistance of external finishing layers of composite thermal insulation faсade systems that have external plaster layers. Vestnik MGSU. 2012. No. 11, pp. 140–143.(In Russian)
4. Гагарин В.Г., Зубарев К.П. Применение теории потенциала влажности к моделированию нестационарного влажностного режима ограждений // Вестник МГСУ. 2019. Т. 14. № 4 (127). С. 484–495. DOI: 10.22227/1997-0935.2019.4.484-495
4. Gagarin V.G., Zubarev K.P. Moisture potential theory application for modelling of enclosing structure unsteady-state moisture regime. Vestnik MGSU. 2019. Vol. 14. No. 4 (127), pp. 484–495. (In Russian) DOI: 10.22227/1997-0935.2019.4.484-495
5. Гагарин В.Г., Зубарев К.П. Математическое моделирование нестационарного влажностного режима ограждений с применением дискретно-континуального подхода // Вестник МГСУ. 2020. Т. 15. № 2. С. 244–256. DOI: 10.22227/1997-0935.2020.2.244-256
5. Gagarin V.G., Zubarev K.P. Mathematical modeling of the unsteady moisture condition of enclosures with application of the discrete-continuous approach. Vestnik MGSU. 2020. Vol. 15, No. 2 (127), pp. 244–256. (In Russian) DOI: 10.22227/1997-0935.2020.2.244-256
6. Gagarin V.G., Akhmetov V.K., Zubarev K.P. Position control of maximum wetting plane for bui lding walls with foam polystyrene heat insulator. IOP conference series: materials science and engineering. 2020. No. 022045. DOI: 10.1088/1757-899X/753/2/022045
7. Gagarin V.G., Akhmetov V.K., Zubarev K.P. Graphical method for determination of maximum wetting plane position in enclosing structures of buildings. IOP conference series: materials science and engineering. 2020. No. 022046. DOI: 10.1088/1757-899X/753/2/022046
8. Гороховский А.Г., Шишкина Е.Е., Старова Е.В., Миков А.А. Анализ процессов сушки древесины существенно неизотермическими режимами // Известия высших учебных заведений. Лесной журнал. 2018. Т. 262. № 2. С. 88–96. DOI: 10.17238/issn0536-1036.2018.2.88
8. Gorokhovsky A.G., Shishkina E.E., Starova E.V., Mikov A.A. Wood Drying Processes under Essentially Nonisothermal Conditions. Izvestiya vysshih uchebnyh zavedenij. Lesnoj zhurnal. 2018. Vol. 262, No. 2, pp. 88–96. (In Russian) DOI: 10.17238/issn0536-1036.2018.2.88
9. Wu Z., Wong H.S., Buenfeld N.R. Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking. Cement and concrete research. 2017. No. 98, pp. 136–154. https://doi.org/10.1016/j.cemconres.2017.04.006
10. Liu Z.C., Hansen W., Wang F.Z. Pumping effect to accelerate liquid uptake in concrete and its implications on salt frost durability. Construction and building materials. 2018. No. 158, pp. 181–188. DOI: 10.1016/j.conbuildmat.2017.09.154
11. Hoseini A., Bahrami A. Effects of humidity on thermal performance of aerogel insulation blankets. Journal of building engineering. 2017. No. 13, pp. 107–115. https://doi.org/10.1016/j.jobe.2017.07.001
12. Jin H.Q., Yao X.L., Fan L.W., Xu X., Yu Z.T. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content. International journal of heat and mass transfer. 2016. No. 92, pp. 589–602.
13. Skerget L., Tadeu A., Ravnik J. BEM numerical simulation of coupled heat, air and moisture flow through a multilayered porous solid. Engineering analysis with boundary elements. 2017. No. 74, pp. 24–33. https://doi.org/10.1016/j.enganabound.2016.10.004
14. Nizovtsev M.I., Letushko V.N., Yu. Borodulin V., Sterlyagov A.N. Experimental studies of the thermo and humidity state of a new building facade insulation system based on panels with ventilated channels. Energy and Buildings. 2020. Vol. 206. No. 109607.
15. Петров А.С., Юзмухаметов А.М., Куприянов В.Н., Андрейцева К.С. Определение характера увлажнения ограждающих конструкций экспериментальным методом цветовой индикации // Строительные материалы. 2019. № 6. С. 24–28. DOI: 10.31659/0585-430X-2019-771-6-24-28
15. Petrov A.S., Yuzmuhametov A.M., Kupriyanov V.N., Andreitseva K.S. Determination of the nature of humidification of enclosing structures by experimental method of color indication. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 24–28. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-24-28
16. Petrov A.S., Kupriyanov V.N. About operational factor influence on vapor permeability of heat-insulating materials. International Journal of Pharmacy and Technology. 2016. Vol. 8, No. 1, pp. 11248–11256.
17. Куприянов В.Н., Петров А.С. Паропроницаемость материалов в условиях, приближенных к эксплуатационным // Известия Казанского государственного архитектурно-строительного университета. 2013. № 2 (24). С. 126–131.
17. Kupriyanov V.N., Petrov A.S. Water vapor permeability of materials under actual operating conditions. Izvestiya Kazanskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. 2013. No. 2 (24), pp. 126–131. (In Russian).
18. Zubarev K.P., Gagarin V.G. Graphical method for determination of maximum wetting plane position in enclosing structures of buildings. IOP conference series: materials science and engineering. 2018. No. 032082. DOI: 10.1088/1757-899X/463/3/032082

For citation: Zubarev K.P. Experimental determination of the vapor permeability coefficient of a sample of building material in vertical position. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 59–64. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-59-64


Print   Email