Experimental Assessment of Nano-Effects in Foam Concrete Technology

Number of journal: 7-2020
Autors:

Morgun V.N.,
Morgun L.V.,
Bogatina A.Yu.

DOI: https://doi.org/10.31659/0585-430X-2020-782-7-45-48
УДК: 691.327.333:539.2

 

AbstractAbout AuthorsReferences
The scientific substantiation of the influence of the mixing speed of raw materials on the amount of capillary coupling forces between dispersed particles of the solid phase in foam concrete mixtures is given. It is shown that the intensity of external energy impact on raw materials controls the mass transfer features when manufacturing foam concrete mixtures and, as a result, the ratio between the amount of surfactants at the gas–liquid interface and in the interpore space. It is proved that the fiber from synthetic fibers, due to the size of its surface energy potential and shape, is able to control the speed of mass transfer of raw materials at an early stage of the formation of the structure of foam concretes. It is experimentally established that increasing the speed of mass transfer at the nanoscale, that is, during the predominance of weak energy interactions between raw materials components, positively affects the kinetics of plastic strength in foam concrete mixtures and the mechanical properties of the hardened material.
V.N. MORGUN1, Candidate of Sciences (Engineering);
L.V. MORGUN2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.Yu. BOGATINA3, Candidate of Sciences (Engineering)

1 Southern Federal University (105/42, Bolshaya Sadovaya Street, 344006, Rostov-on-Don, Russian Federation)
2 Don State Technical University (1, Gagarin Square, 344400, Rostov-on-Don, Russian Federation)
3 Rostov State Transport University (2, Rostovskogo Strelkovogo Polka Narodnogo Opolcheniya Square, 344038, Rostov-on-Don, Russian Federation)

1. Boyarko G.Yu. Ekonomika mineral’nogo syr’ya [Mineral Economics]. Tomsk: «Audit-Inform». 2000. 361 p.
2. Chanturiya V.A. Progressivnye tekhnologii kompleksnoi i glubokoi pererabotki prirodnogo i tekhnogennogo mineral’nogo syr’ya [Advanced technologies of complex and deep processing of natural and technogenic mineral raw materials]. Moscow: Institute for the Integrated Development of the bowels of the Russian Academy of Sciences. 2014. 28 p.
3. Metodicheskie rekomendatsii po primeneniyu klassifikatsii zapasov mestorozhdenii i prognoznykh resursov tverdykh poleznykh iskopaemykh. Stroitel’nyi i oblitsovochnyi kamen’ [Guidelines for the application of the classification of reserves of deposits and forecast resources of solid minerals. Building and facing stone]. Moscow: FGU GKZ. 2007. 28 p.
4. Kosykh A.V., Lokhova, I.A., N.A. Makarova. Iskusstvennye i prirodnye stroitel’nye materialy i izdeliya [Artificial and natural building materials and products]. Bratsk: BrGU. 2006. 188 p.
5. Efimov V.P. Investigation of the long-term strength of rocks in the mode of constant loading speed. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2007. No. 6, pp. 37–44. (In Russian).
6. Rekomendatsii po obsledovaniyu i otsenke sostoyaniya krupnopanel’nykh i kamennykh zdaniy [Recommendations for the examination and assessment of the condition of large-panel and stone buildings]. Moscow: TsNIISK. 1987. 36 p.
7. Protalinsky A.N. Tekhnologiya prednapryazhennogo zhelezobetona [Technology of prestressed concrete]. Novosibirsk: Federal Agency for Education of the Russian Federation, Novosibirsk State. architectural building. University (SIBSTRIN). 2006. 92 p.
8. Zhelezobeton v XXI veke, sostoyanie i perspektivy razvitiya betona i zhelezobetona v Rossii [Reinforced concrete in the XXI century, the state and prospects of development of concrete and reinforced concrete in Russia]. Moscow: Gothic. 2001, pp. 123–223.
9. Gafarova N.E. Fiber-concrete for monolithic construction. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovaniy. 2017. No. 3, pp. 11–14. (In Russian).
10. Svatovskaya L.B., Sycheva A.M., Solov’eva V.Ya., Surin D.V., Kozin P.A., Starchukov D.S., Surkov V.N., Yurov O.V., Mandritsa D.P., Ershikov N.V., Solov’ev D.V. Sovremennye idei upravleniya svoistvami kompozitsionnykh materialov na osnove neorganicheskikh vyazhushchikh. Monografiya [Modern ideas for managing the properties of composite materials based on inorganic binders. Monograph]. Saint Petersburg: PGUPS. 2015. 78 p.
11. Pertsev V.T. Upravlenie protsessami rannego strukturoobrazovaniya betonov. Monografiya [Management of processes of early structural formation of concrete. Monograph]. Voronezh: VoronezhGASU. 2006. 234 p.
12. Gusev A.I. Nanomaterialy, nanostruktury, nanotekhnologii [Nanomaterials, nanostructures, nanotechnologies]. Moscow: FIZMATLIT. 2005. 416 p.
13. Fridrikhsberg D.A. Kurs kolloidnoi khimii [The course of colloid chemistry]. Saint Petersburg: Khimiya. 1995. 400 p.
14. Patent RF 2316750. A method for determining the plastic strength of a foam concrete mixture / Morgun V.N. Declared 03.03.2006. Publ. 02.10.2008. Bull. No.4. (In Russian).
15. Rusanov A.I. Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv [Micelle formation in surfactant solutions]. Saint Petersburg: Khimiya. 1992. 280 p.
16. Adamson A. Fizicheskaya khimiya poverkhnostei [Physical chemistry of surfaces]. Moscow: Mir. 1979. 568 p.
17. Bleshchik N.P. Strukturno-mekhanicheskie svoistva i reologiya betonnoi smesi i pressvakuumbetona [Structural and mechanical properties and rheology of concrete mix and press-vacuum concrete]. Minsk: Nauka i tekhnika. 1977. 231 p.

For citation: Morgun V.N., Morgun L.V., Bogatina A.Yu. Experimental assessment of nano-effects in foam concrete technology. Stroitel’nye Materialy [Construction Materials]. 2020. No. 7, pp. 45–48. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-782-7-45-48


Print   Email