Calculation of the Composition of Granular Charges for Decorative Wall Ceramics

Number of journal: 12-2020
Autors:

Akst D.V.,
Stolboushkin A.Yu.,
Fomina O.A.

DOI: https://doi.org/10.31659/0585-430X-2020-787-12-25-33
УДК: 666.74:666.3.016

 

AbstractAbout AuthorsReferences
It has been shown the necessity of using a multicomponent charge in modern technologies of building ceramics, that caused by a number of reasons, including the usage of low-grade natural and technogenic raw materials, and the relevance of its rational selection, considering the chemical and mineralogical composition of the charge components. The results of the study of the chemical, granulometric and mineral composition of the coloring technogenic raw materials are presented: gas cleaning dust from the manganese alloys production, slag from ferrovanadium smelting and a slime part of the waste from iron ores enrichment. A perspective direction for the creation of ceramic-matrix composite materials and a developed model for the formation of a frame-painted structure of composites, which allows the usage of technogenic color modifiers for volumetric staining, are noted. The basic provisions of the developed mathematical calculation method of the granular charge composition for obtaining ceramics with frame-painted structure are considered. A model of a multilayer granule with different layered raw materials distribution is shown. The summary data of the calculation for different charge compositions and the main calculation indicators are given. The results of approbation of the calculation method on the example of manganese- and vanadium-containing technogenic raw materials for the formation of two- and three-component granular mixtures are presented. Experimental samples of decorative ceramic bricks with matrix structure were obtained in the factory. It has been substantiated and experimentally confirmed a pronounced change in the color of fired products with the use of a coloring technogenic additive with a reduced content of chromophores.
D.V. AKST1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.Yu. STOLBOUSHKIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.A. FOMINA1, 2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Siberian State Industrial University (42, Kirova Street, Novokuznetsk, 654007, Russian Federation)
2 Mechanical Engineering Research Institute of the RAS, (4, Maly Kharitonievsky Side street, Moscow, 101990, Russian Federation)

1. Coletti C., Maritan L., Cultrone G., Mazzoli C. Use of industrial ceramic sludge in brick production: Effect on aesthetic quality and physical properties. Construction and Building Materials. 2016. No. 124, pp. 219–227. DOI: https://doi.org/10.1016/j.conbuildmat.2016.07.096
2. Valanciene V., Siauciunas R., Baltusnikaite J. The influence of mineralogical composition on the colour of clay body. Journal of the European Ceramic Society. 2010. No. 30, pp. 1609–1617. DOI: https://doi.org/10.1016/j.jeurceramsoc.2010.01.017
3. Ariskina K.A., Ariskina R.A., Salahov A.M., Vagi-zov F.G., Ahmetova R.T. The influence of the chemical and mineralogical composition of clays on the color of ceramic materials. Vestnik tehnologicheskogo universiteta. 2012. Vol. 19. No. 24, pp. 25–28. (In Russian).
4. Cultrone G., Sebastián E., de la Torre M.J. Mineralo-gical and physical behaviour of solid bricks with additives. Construction and Building Materials. 2005. Vol. 19, pp. 39–48. DOI: https://doi.org/10.1016/j.conbuildmat.2004.04.035
5. Ezerskiy V.A. Quantitative color assessment of ceramic facial products. Stroitel’nye Materialy [Construction Materials]. 2015. No. 8, pp. 76–80. (In Russian).
6. Valanchene V., Mandeikite N., Urusova E. Color intensity of ceramics with glauconite additives. Steklo i keramika. 2006. No. 3, pp. 23–25. (In Russian).
7. González I., Campos P., Barba-Brioso C., Romero A., Galán E., Mayoral E. A proposal for the formulation of high-quality ceramic “green” materials with traditional raw materials mixed with Al-clays. Applied Clay Science. 2016. Vol. 131, pp. 113–123. DOI: https://doi.org/10.1016/j.clay.2015.12.035
8. Herek L.C.S., Hori C.E., Reis M.H.M., Mora N.D., Tavares C.R.G., Bergamasco R. Characterization of ceramic bricks incorporated with textile laundry sludge. Ceramics International. 2012. No. 38, pp. 951–959. DOI: https://doi.org/10.1016/j.ceramint.2011.08.015
9. Phonphuak N., Saengthong C., Srisuwan A. Physical and mechanical properties of fired clay bricks with rice husk waste addition as construction materials. Materials Today: Proceedings. 2019. Vol. 17, pp. 1668–1674. DOI: https://doi.org/10.1016/j.matpr.2019.06.197
10. Kara-sal B.K. Influence of ferrous compounds on the sintering of clay masses under reduced pressure of the firing medium. Steklo i keramika. 2005. No. 2, pp. 13–16. (In Russian).
11. Golovanova S.P., Zubekhin A.P., Likhota O.V. Whitening and intensification of ceramic sintering using iron-containing clays. Steklo i keramika. 2004. No. 12, pp. 9–11. (In Russian).
12. Bogdanov A.N., Abdrakhmanova L.A., Gordeev A.S. Evaluation of the effectiveness of a carbonate-containing additive in clay raw materials for the facial ceramics creating. Izvestiya KazGASU. 2013. No. 2 (24), pp. 215–220. (In Russian).
13. Vakalova T.V., Pogrebenkov V.M., Revva I.B. Reasons for the formation and methods of efflorescence eliminating in ceramic brick technologyю. Stroitel’nye Materialy [Construction Materials]. 2004. No. 2, pp. 30–31. (In Russian).
14. Pishch I.V., Maslennikova G.N., Gvozdeva N.A., Klimosh Yu.A., Baranovskaya E.I. Methods for ceramic bricks staining. Steklo i keramika. 2007. No. 8, pp. 15–18. (In Russian).
15. Gorlov Yu.P. Methods for efflorescence prevention on ceramic brick. Stroitel’nye Materialy [Construction Materials]. 1996. No. 11, pp. 29–30. (In Russian).
16. Stolboushkin A.Yu. Improving decorative properties of ceramic wall materials produced of technogenic and natural resources. Stroitel’nye Materialy [Construction Materials]. 2013. No. 8, pp. 24–29. (In Russian).
17. Rusovich-Yugai N.S. Dextrin influence on the properties of glazes, ceramic paints and cobalt oxide reduction. Steklo i keramika. 2006. No. 3, pp. 20–22. (In Russian).
18. Maslennikova G.N., Pishch I.V. Keramicheskie pigmenty [Ceramic pigments]. Moscow: Stroymaterialy. 2009. 224 p.
19. Yatsenko N.D., Zubekhin A.P. Scientific basis of innovative technologies of ceramic bricks and its properties management, depending on the chemical and mineralogical composition of raw materials. Stroitel’nye Materialy [Construction Materials]. 2014. No. 4, pp. 28–31. (In Russian).
20. Pivinskiy Yu.E. Kvartsevaya keramika. VKVS i keramobetony. Istoriya sozdaniya i razvitiya tekhnologii [Silica Ceramics. Highly concentrated ceramic astringent suspensions and ceramic-concrete. History of creation and development of technologies]. Saint Petersburg: Politechnika print. 2018. 360 p.
21. Portnoi K.I., Salibekov S.E., Svetlov I.L., Chuba-rov V.M. Struktura i svoistva kompozitsionnykh materialov [The structure and properties of composite materials]. Moscow: Mashinostroyeniye. 1979. 255 p.
22. Fedorkin S.I., Makarova E.S. Utilization of dispersed production wastes into building materials with matrix structure. Construction and technogenic safety: digest of scientific papers. Simferopol. 2010. Iss. 32, pp. 70–74. (In Russian).
23. Vereshchagin V.I., Shil’tsina A.D., Selivanov Yu.V. The structure modeling and strength evaluation of construction ceramics from coarse-grained masses. Stroitel’nye Materialy [Construction Materials]. 2007. No. 6, pp. 65–68. (In Russian).
24. Stolboushkin A.Yu., Akst D.V., Fomina O.A. Calculation of the composition of granular charges for decorative wall ceramics. Stroitel’nye Materialy [Construction Materials]. 2020. No. 8, pp. 38–46. DOI: https://doi.org/10.31659/0585-430X-2020-783-8-38-46 (In Russian).
25. Patent RF 2701657. Sposob polucheniya syr’evoi smesi dlya dekorativnoi stroitel’noi keramiki [The method of obtaining a raw mix for decorative construction ceramics]. Akst D.V., Stolboushkin A.Yu., Fomina O.A. Declared 19.12.2018. Published 30.09.2019. Bulletin No. 28. (In Russian).
26. Stolboushkin A.Yu., Akst D.V., Fomina O.A., Syro-myasov V.A. Change in color intensity of decorative ceramic materials with matrix structure. Trudy NGASU. 2017. Vol. 20. No. 2 (65), pp. 92–102. (In Russian).
27. Akst D.V., Stolboushkin A.Yu. Development of a method for calculating the composition of the charge for decorative ceramics with frame-painted structure. Vestnik Sibirskogo gosudarstvennogo industrial’nogo universiteta. 2020. No. 3 (33), pp. 34–41. (In Russian).
28. Butensky M., Human D. Rotary drum granulation: an experimental study of the factors affecting granule size. Industrial & Engineering Chemistry Fundamentals. 1971. Vol. 10. No. 2, pp. 212–219.
29. Belov V.V., Smirnov M.A. Stroitel’nye kompozity iz optimizirovannykh mineral’nykh smesei [Building composites from optimized mineral mixtures]. Tver: TvGTU. 2012. 112 p.
30. Naumov M.M., Nokhratyan K.A. Spravochnik po proizvodstvu stroitel’noi keramiki [Handbook for the production of building ceramics]. Moscow: Gosstroyizdat. 1962. 699 p.
31. Storozhenko G., Stolboushkin A. Ceramic bricks from industrial waste. Ceramic & Sakhteman. Seasonal magazine of Ceramic & Building. 2010. No. 5, pp. 2–6.
32. Korolev L.V., Lupanov A.P., Pridatko Yu.M. Dense packing of polydisperse particles in composite building materials. Sovremennye problemy nauki i obrazovaniya. 2007. No. 6, pp. 109–114. (In Russian).
33. Aste T., Saadstfar M., Sakellariou A., Senden T. Investigating the geometrical structure of disordered sphere packaging. Physica A. 2004. Vol. 339, pp. 16–23.
34. Torquato S., Stillinger F.H. Multiplicity of generation, selection, and classification procedure for jammed hard particle. Physical Review Letters. 2000. Vol. 8, pp. 2064–2067.

For citation: Akst D.V., Stolboushkin A.Yu., Fomina O.A. Calculation of the composition of granular charges for decorative wall ceramics. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 25–33. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-787-12-25-33


Print   Email