The Study of the Impact of Ultradisperse Metakaolin Additives on the Properties of Gypsum Binder

Number of journal: №1-2-2019
Autors:

Shirinzade I.N.
Bashirov E.H.
Kurbanova I.D.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-79-81
УДК: 666.914

 

AbstractAbout AuthorsReferences
The article is dedicated to improving properties of high strength gypsum binder. For this purpose was used high-reactivity metakaolin – HRM. First of all the characteristics of metakaolin – the degree and composition of the dispersion have been determined. As a result of the experiments it has been established that the addition of metakaolin significantly increases the mechanical strength of binding material consisting of gypsum and lime mixer (the metakaolin has increased by 30% relative to nonionic samples) and also has a positive effect on water permeability (water resistance factor from 0.4 to 0, Up to 69). These results were obtained during the use of metakaolin by 7% and 5% of the population. An increase in the water permeability of the material studied was also confirmed by X-ray analysis. It has been established that the metacaolin-specific amorphous structure is not observed in the diffractogram of the material prepared on the basis of this compound, and there are fewer intensity lines of new crystalline structures. It shows that all the metakaolin used was interacting with the other components (whith Ca(OH)2) and formed a new crystalline structure.
I.N. SHIRINZADE, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.H. BASHIROV, Candidate of Sciences (Engineering)
I.D. KURBANOVA, Engineer

Azerbaijani architectural and construction university (AZ 1073, Azerbaijan, Baku, A. Sultanova St., 5)

1. Fisher H.-B. Low-burnt calcium sulfate hemihydrate and water absorption. Zement I ego primenenie. 2005. No. 4, pp. 39–42. (In Russian).
2. Chernysheva N.V. The Use of Anthropogenic Raw Materials for Increase of Woter Resistance of a Composite Gypsum Binder. Stroitel,nye Materialy [Construction Materials]. 2014. No.7, pp. 53–56. (In Russian).
3. Shirinzade I. N. Fiziko-khimicheskie osnovy stroitel’nykh materialov [Physicochemical properties of building materials]. Baku. 2006. 278 p.
4. Kuznetsova T.V., Kudrashev I.V., Timashev V.V Fizicheskaya khimiya vyazhushchikh materialov [Physical chemistry of binding materials]. Мoscow: Vysshaya shkola, 1989. 384 p.
5. Goncharov Yu.A., Dubrovina G.G., Gubskaya A.G., Bur’yanov A.F. Gipsovye materialy i izdeliya novogo pokoleniya: otsenka energoeffektivnosti [Plaster materials and products of new generation: energy efficiency assessment]. Minsk: Kolovrat, 2016. 333 p.
6. Berdov G.I., Il’ina L.V., Zyryanova V.N., Nikonenko N.I., Sukharenko V.A. Influence of Mineral Microfillers on Building Materials Properties. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 79–83. (In Russian).
7. Khudyakova L.I., Voiloshnikov O.V., I.Yu. Influence of Mechanical Activation on Process of Formation and Properties of Composite Binding Materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 3, pp. 37–39. (In Russian).
8. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Nefedev A.P., Khudovekova E.A., Buryanov A.F., Fisher H.-B. Activated fillers for gypsum and anhydrite mixes. Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 14–17. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-14-17 (In Russian).
9. Belov V.V., Petropavlovskaya V.B., Khramtsov N.V. Stroitel’nye materialy [Construction мaterials]. Moscow: ASV. 2014. 272 p.
10. Zhernovsky I.V., Kozhukhova N.I., Cherevatova A.V., Rakhimbaev I.Sh., Zhernovskaya I.V. New data about nano-sized phase formation in binding system «gypsum — lime». Stroitel’nye Materialy [Construction Materials]. 2016. No.7, pp. 9–12. (In Russian).
11. Fedulov A.A. Tekhnologiya gipsovykh otdelochnykh materialov i izdelii [Technology of gypsum finishing materials and products]. Moscow: RIF «STROIMATERIALY». 2018. 240 p.
12. Garkavi M.S., Fisher H.-B., Burianov A.F. Features of crystallization of gypsum dihydrate in the course of artificial aging of gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2015. No. 12, pp. 73–75. (In Russian).
13. Petropavlovskij K.S., Novichenkova T.B. Effect of modifying additives on the structure formation of self-reinforced gypsum composites. V International seminar-competition of young scientists and post-graduate students working in the field of binders, concretes and dry mixes: collection of reports. Saint Petersburg. 2015, pp. 112–119. (In Russian).
14. Morozova N.N., Kuznetsova G.V., Maysuradze N.V., Akhtariev R.R., Abdrashitova L.R., Nizamutdinova E.R. Research in the activity of a pozzolanic component and superplasticizer for gypsum cement pozzolanic binder of white colour (GCPB). Stroitel’nye Materialy [Construction Materials]. 2018. No. 8, pp. 26–30. DOI: https://doi.org/10.31659/0585-430X-2018-762-8-26-30 (In Russian).
15. Khozin V.G., Morozova N.N., Sagdatullin D.G. Highstrength composite plaster knitting for constructional concrete. 2. Weimar Gypsum Conference. Weimar. 2014, pp. 225–322.
16. Manushina A.S., Akhmetzhanov A.M., Potapova E N. Influence of additives on properties of gypsum cement pozzolanic binder. Uspekhi v khimii i khimicheskoy tekhnologii. 2015. Vol. XXIX. No. 7, pp. 59-61. (In Russian).
17. Belov V.V., Obraztsov I.V. The use of virtual simulators for employees of industrial laboratories. Stroitel’nye Materialy [Construction Materials]. 2015. No. 3, pр. 64–67. (In Russian).

For citation: Shirinzade I.N., Bashirov E.H., Kurbanova I.D. The study of the impact of ultradisperse metakaolin additives on the properties of gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 79–81. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-79-81 (In Russian).


Print   Email