Method for an Integrated Study of the Transition Layer of the Core–Shell in Ceramic Matrix Composites of Semi-Dry Pressing

Number of journal: 9-2019
Autors:

Stolboushkin A.Yu.

DOI: https://doi.org/10.31659/0585-430X-2019-774-9-28-35
УДК: 666.3-184.4

 

AbstractAbout AuthorsReferences
It has been noted the effect of interfacial interaction between the components of the dispersion medium and the dispersed phase on the physicomechanical and chemical properties of ceramic matrix composites. It largely depends on the mechanical compatibility of the components of the raw materials. It has been shown the formation of a transition layer at the interface between the shell (matrix) and the core (aggregated filler material) of a ceramic material with a matrix structure. A technique is proposed for the differential study of phase transformations and the kinetics of the occurrence of physicochemical reactions at the interface between the dispersion medium and the dispersed phase. The concept of manufacturing a multilayer sample modeling at the macro level the transition between the shell and the core of the ceramic matrix composite is shown. It has been given the ratio of the raw materials of the core and shell for the preparation of various layers of the model sample using technogenic and natural raw materials. The critical conditions for obtaining multilayer model samples are considered depending on the chemical and mineralogical composition and ceramic properties of the raw material. A block diagram of the method for determining the phase composition and properties of the core – shell transition layer in semi-dry pressed ceramic matrix composites has been developed. It was revealed the active interaction of the matrix shell with silicate and oxide phases of the core in the transition zone. A significant excess of strength indicators was established compared with the additive strength of the ceramic material after firing of the mixture of components during organizing the matrix structure.
A.Yu. STOLBOUSHKIN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Siberian State Industrial University (42, Kirova Street, Novokuznetsk, 654007, Russian Federation)

1. Magerramova I.A., Rashchepkina S.A., Sinitsyna I.N. Investigation of the properties of composite materials filled with an inorganic matrix. Sovremennye naukoemkie tekhnologii. 2016. No. 2–2, pp. 246–250. (In Russian).
2. Salakhov A.M. Keramika dlya stroitelei i arkhitektorov [Ceramics for builders and architects]. Kazan: Paradigm. 2009. 295 p.
3. Donald I.W., Mc Millan P.W. Ceramic-matrix composites. Journal of Materials Science. 1976. Vol. 11. No. 5, pp. 949–972.
4. Phillips D.C. Fiber reinforced ceramics. Handbook of Composites: еd. by A. Kelly and S.T. Mileiko. New York: Elsevier. 1983, pp. 373–426.
5. Mecholsky J.J. Evaluation of mechanical property testing methods for ceramic matrix composites. American society-bulletin. 1986. Vol. 65. No. 2, pp. 315–322.
6. Khrulev V.M., Tentiev Zh.T., Kurdyumova V.M. Sostav i struktura kompozitsionnykh materialov [Composition and structure of composite materials]. Bishkek: Polyglot. 1997. 124 p.
7. Mostaghaci H. et al. (Eds.) Processing of ceramic and metal matrix composites. New York: Pergamon Press. 1989. 479 p.
8. Portnoi K.I. et al. Struktura i svoistva kompozitsionnykh materialov [The structure and properties of composite materials]. Moscow: Engineering. 1979. 255 p.
9. Pivinsky Yu.E. Kvartsevaya keramika. VKVS i keramobetony. Istoriya sozdaniya i razvitiya tekhnologii [Silica Ceramics. Highly concentrated ceramic astringent suspensions and ceramic-concrete. History of creation and development of technologies]. Saint Petersburg: Politechnika print, 2018. 360 p.
10. Kristensen R. Vvedenie v mekhaniku kompozitov [Introduction to the mechanics of composites]. Moscow: Mir. 1982. 336 p.
11. Tarnopol’skii Yu.M., Zhigun I.G., Polyakov V.A. Prostranstvenno-armirovannye kompozitsionnye materialy: spravochnik [Spatially Reinforced Composite Materials: Book of reference]. Moscow: Engineering. 1987. 223 p.
12. Stolboushkin A.Yu. et al. Ceramic wall materials with matrix structure based on non-sintering stiff technogenic and natural raw materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 8, pp. 19–23. (In Russian).
13. Shojaei A. et al. Multi-scale constitutive modeling of ceramic matrix composites by continuum damage mechanics. International Journal of Solids and Structures. 2014. Vol. 51, pp. 4068–4081. doi:10.1016/j.ijsolstr.2014.07.026.
14. Stolboushkin A.Yu. Theoretical grounds of formation of ceramic matrix composites on the basis of anthropogenic and natural raw materials. Stroitel’nye Materialy [Construction Materials]. 2011. No. 2, pp. 10–13. (In Russian).
15. Avdonin A.S. et al. Tekhnologicheskaya otsenka mineral’nogo syr’ya. Oprobovanie mestorozhdenii. Kharakteristika syr’ya: Spravochnik [Technological evaluation of mineral raw materials. Testing of deposits. Characteristics of raw materials: Book of reference]. Moscow: Nedra. 1990. 272 p.
16. Bowker M., Davies P.R. Scanning tunneling microscopy in surface science, nanoscience and catalysis. Weinheim: Wiley-VCH. 2010. 261 p.
17. Stolboushkin A.Yu., Vereshchagin V.I., Fomina O.A. Phase composition of the core–shell transition layer in a construction ceramic matrix structure made from non-plastic raw material with clay. Glass and Ceramics (English translation of Steklo i Keramika). 2019. Vol. 76(1-2), pp. 16–21. https://doi.org/10.1007/s10717-019-00124-3
18. Stolboushkin A.Yu. et al. Production of decorative wall ceramics from argillous raw material and wastes of manganese ore mining. Stroitel’nye Materialy [Construction Materials]. 2016. No. 12, pp. 38–44. (In Russian).
19. Stolboushkin А.Yu. et al. Macromodel of interfacial transition layer in ceramic ma-trix composites // MATEC Web of Conferences: IV International Young Researchers Conference “Youth, Science, Solutions: Ideas and Prospects”. 2018. Vol. 143. 02003, pp. 1–7. doi:10.1051/matecconf/201714302003.

For citation: Stolboushkin A.Yu. Method for an integrated study of the transition layer of the core–shell in ceramic matrix composites of semi-dry pressing. Stroitel’nye Materialy [Construction Materials]. 2019. No. 9, pp. 28–35. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-774-9-28-35


Print   Email