Evolution of Approaches to Design of Autoclave Hardening Materials

Number of journal: №1-2-2019
Autors:

Nelyubova V.V.

DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-88-99
УДК: 691:666.97.035.56

 

AbstractAbout AuthorsReferences
The main stages of the development of technology of autoclaved materials are given. Features of transformation of approaches to design of materials of autoclave hardening with due regard for problems of production, geo-economic conditions, parameters of technology and other factors are shown. The necessity of transition from classical technology, which is based on the use of traditional natural components, to utilization and modification approaches, providing improving technical and economic indices of the materials of autoclave hardening in terms of reduction of material and energy costs when obtaining products of specified quality is substantiated. Modern methodological bases for increasing the efficiency of autoclave hardening materials, when using natural and anthropogenic raw materials of various genotypes, are presented. It is shown that the basis of the modern concept of control over the processes of structure formation of materials of autoclave hardening as a guarantor of obtaining materials with an optimal combination of quality indicators is the most complete use of the possibilities of raw materials without significant complication of the production process.
V.V. NELYUBOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Khint I.A. O nekotorykh osnovnykh voprosakh avtoklavnogo izgotovleniya izvestkovo-peschanykh izdelii [On some basic issues of autoclaved manufacturing of lime-sand products]. Tallinn: Estonian state publishing house. 1954. 80 p.
2. Khint I.A. Opyt zavoda «Kvarts» po dezintegratornomu sposobu podgotovki syr’ya dlya proizvodstva silikatnykh izdelii [Experience of the plant “Quartz” in the disintegrating method of raw materials preparation for the production of silicate products]. Moskow: Promstroyizdat. 1952. 12 p.
3. Khint I.A. Ob osnovnykh problemakh mekhanicheskoi aktivatsii [On the main problems of mechanical activation]. Tallinn: Estonian state publishing house. 1977. 14 p.
4. Rebinder P.A. Poverkhnostnye yavleniya v dispersnykh sistemakh. Fiziko-khimicheskaya mekhanika. Izbrannye trudy [Surface phenomena in dispersed systems. Physico-chemical mechanics. Selected Works]. Moscow: Nauka. 1979. 348 p.
5. Bozhenov P.I. Tekhnologiya avtoklavnykh materialov [Technology of autoclave materials]. Leningrad: Stroyizdat. 1978. 368 p.
6. Abrosenkova V.F. Research in the field of lime-sand building materials hardening without heat treatment. Diss… Candidate of Science (Engineering). Leningrad. 1962. 133 p.
7. Abrosenkova V.F., Logginov G.I., Rebinder P.A. Binding of lime in calcium hydrosilicate under normal conditions. Report of Academy of sciences of USSR. 1957. Vol. 115. No. 3, pp. 509–511.
8. Silaenkov E.S. Dolgovechnost’ izdelii iz yacheistykh betonov [Durability of cellular concrete products]. Moscow: Stroyizdat. 1986. 176 p.
9. Krivitskii M.Ya., Levin N.I., Makarichev V.V. Yacheistye betony (tekhnologiya, svoistva i konstruktsii) [Cellular concretes (technology, properties and structures)]. Moskow: Stroyizdat. 1972. 137 p.
10. Volzhenskiy A.V. On the conditions of formation and structure of cementing substances in automatic materials. Reports of the inter-university conference on the study of autoclave materials and their use in construction. Leningrad: LISI. 1959, pp. 93–97.
11. Lesovik V.S. Genetic basis of energy saving in the building materials industry. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 1994. No. 7–8, pp. 96–100. (In Russian).
12. Lesovik V.S. Povyshenie effektivnosti proizvodstva stroitel’nykh materialov s uchetom genezisa gornykh porod [Improving the efficiency of production of building materials taking into account the genesis of rocks]. Moscow: IASV. 2006. 155 p.
13. Volodchenko A.N., Lesovik V.S., Alfimov S.I., Zhukov R.V. By-products of the mining industry in the production of building materials. Sovremennye naukoemkie tekhnologii. 2005. No. 10, p. 79. (In Russian).
14. Savchenko E.S., Gridchin A.M., Lesovik B.C., Smolyago G.A. Conceptual approaches to solving housing problem in the Russian Federation on the example of the Belgorod region. Stroitel’nye Materialy [Construction Materials]. 2006. No. 4, pp. 9–11. (In Russian).
15. Lesovik V.S., Volodchenko A.N., Alfimov S.I., Zhukov R.V., Garanin V.K. Cellular concrete with application of the Arkhangelsk diamondiferous province by-products. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2007. No. 2 (578), pp. 13–18. (In Russian).
16. Lesovik V.S. Environmental aspects of building materials science. Promyshlennoe i grazhdanskoe stroitel’stvo. 2008. No. 8, pp. 19–20. (In Russian).
17. Volodchenko A.N., Lesovik V.S. Silicate autoclave materials using nano-dispersed raw materials. Stroitel’nye Materialy [Construction Materials]. 2008. No. 11, pp. 42–44. (In Russian).
18. Volodchenko A.N., Zhukov R.V., Lesovik V.S., Doroganov E.A. Optimization of the properties of silicate materials based on lime-sand-clay binder Stroitel’nye Materialy [Construction Materials]. 2007. No. 4, pp. 66–69. (In Russian).
19. Lesovik V.S The state and prospects of using technogenic raw materials. BST: Byulleten’ stroitel’noi tekhniki. 2014. No. 7 (959), pp. 59–60. (In Russian).
20. Volodchenko A.N., Lesovik V.S. Silicate materials of autoclave hardening on the basis of aluminosilicate raw materials as a factor of optimization of the system “Man – material – live environment”. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2014. No. 3 (663), pp. 27–33. (In Russian).
21. Volodchenko A.N., Lesovik V.S. Prospects for the widening of the range of autoclaved silicate materials Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 34–37. (In Russian).
22. Lesovik V.S., Rakhimbaev I.Sh. Calculation and refinement of thermodynamic properties of highly basic calcium hydrosilicates. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2011. No. 3, pp. 108–110. (In Russian).
23. Kaftaeva M.V., Rakhimbaev Sh.M., Pospelova E.A. Study of the phase composition of autoclave cellular concrete. Sovremennye problemy nauki i obrazovaniya. 2013. No. 5, p. 12. (In Russian).
24. Kaftaeva M.V., Rakhimbaev Sh.M., Zhukov D.A., Kovalevskaya K.Yu., Shugaeva M.A., Marushko M.V. Justification of requirements for raw materials for the autoclave production of gas silicate concretes. Sovremennye problemy nauki i obrazovaniya. 2014. No. 1, p. 186. (In Russian).
25. Rakhimbaev Sh.M., Kaftaeva M.V., Rakhimbaev I.Sh. Thermodynamic analysis of the process of lime slaking using the Born-Haber cycle. Tekhnika i tekhnologiya silikatov. 2015. Vol. 22. No. 1, pp. 2–5. (In Russian).
26. Kaftaeva M.V., Rakhimbaev Sh.M., Komarova N.D., Alekenova R.A. On the effect of cement on the basic properties of gas silicates. Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Seriya: Tekhnicheskie nauki. 2015. No. 4 (185), pp. 107–111. (In Russian).
27. Kaftaeva M.V., Rakhimbaev Sh.M. The microstructure of autoclaved gas silicates and the effect of gypsum stone on it. Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2015. Vol. 1. No. 3, pp. 34–41. (In Russian).
28. Kaftaeva M.V., Rakhimbaev Sh.M. Obosnovanie tekhnologii proizvodstva effektivnykh avtoklavny slikatnykh gazobetonov: monografiya [Justification of the production technology of efficient autoclave silicate concrete: a monograph]. Belgorod: BGTU. 2015. 258 p.
29. Kaftaeva M.V., Rakhimbaev Sh.M., Komarova N.D., Kurbatov V.L. Thermodynamic analysis of the reaction of the formation of xonotlite from lime-silica binder during autoclave hardening. Polzunovskii vestnik. 2016. No. 1, pp. 77–81. (In Russian).
30. Strokova V.V. Crystal-chemical approach to the problem of choice of raw materials. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2003. No. 5, pp. 376. (In Russian).
31. Strokova V.V. The current state and environmental problems of the development of the raw materials base of the construction industry of the KMA region. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2004. No. 8, p. 290. (In Russian).
32. Strokova V.V. Managing the processes of synthesis of building materials taking into account the typomorphism of raw materials. Stroitel’nye Materialy [Construction Materials]. 2004. No. 9, p. 53. (In Russian).
33. Lesovik V.S., Strokova V.V. To the problem of using typomorphic characteristics when choosing rational areas of the use of technogenic raw materials. Zapiski Gornogo instituta. 2005. Vol. 166, p. 58. (In Russian).
34. Fomina E.V., Altynnik N.I., Strokova V.V., Nelyubova V.V., Bukhalo A.B. Regulation of rheological characteristics of a binder mixture during formation of cellular structure of autoclaved hardening products. Stroitel’nye Materialy [Construction Materials]. 2011. No. 9, pp. 33–35. (In Russian).
35. Fomina E.V., Zhernovskii I.V., Strokova V.V. Features of the phase formation of silicate cellular autoclaved products with aluminosilicate raw materials. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 38–39. (In Russian).
36. Strokova V.V., Alfimova N.I., Cherkasov V.S., Shapovalov N.N. Pressed silicate autoclaved hardening materials with wastes of haydite production. Stroitel’nye Materialy [Construction Materials]. 2012. No. 3, pp. 14–15. (In Russian).
37. Fomina E.V., Strokova V.V., Kudeyarova N.P. Features of the use of pre-slaked lime in cellular autoclaved concrete. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2013. No. 5 (653), pp. 29–34. (In Russian).
38. Volodchenko A.N., Strokova V.V. Development of scientific bases of production of silicate autoclave materials using clay raw materials. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 25–31. (In Russian).
39. Volodchenko A.N., Strokova V.V. Improving the efficiency of silicate cellular autoclaved hardening materials. Vestnik Severo-Vostochnogo federal’nogo universiteta im. M.K. Ammosova. 2017. No. 2 (58), pp. 60–69. (In Russian).
40. Fedin A.A., Chernyshov E.M. Improvement of technology and the elimination of defects in the production of gas silicate products. Improvement of technology and the elimination of defects in the production of gas silicate products. Stroitel’nye Materialy [Construction Materials]. 1962. No. 4, pp. 25–28. (In Russian).
41. Baranov A.T., Chernyshov E.M., Krokhin A.M. Quality increase of cellular concretes by improving their structure. Beton i zhelezobeton. 1977. No. 1. pp. 9–11. (In Russian).
42. Chernyshov E.M., Potamoshneva N.D. Manufacture of silicate autoclave materials using wastes of the enrichment of KMA banded iron formation. Stroitel’nye Materialy [Construction Materials]. 1992. No. 11, pp. 4–5. (In Russian).
43. Chernyshov E.M. Regularities of development of the structure of autoclaved materials. Stroitel’nye Materialy [Construction Materials]. 1992. No. 11, pp. 28–31. (In Russian).
44. Chernyshov E.M., D’yachenko E.I. System researches of structural factors controlling the resistance of silicate autoclave materials to fracture under mechanical loading. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 1996. No. 6. pp. 44–53. (In Russian).
45. Akulova I.I., Chernyshov E.M. Problems, methodology and strategy for managing the development of the production base of a regional housing and construction complex. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2003. No. 7, pp. 82–84. (In Russian).
46. Chernyshov E.M., Fedin A.A., Potamoshneva N.D., Kukhtin Yu.A. Gas silicate: modern flexible technology of material and products. Stroitel’nye Materialy [Construction Materials]. 2007. No. 4, pp. 4–9. (In Russian).
47. Chernyshov E.M. Problems of biotechnologenic compatibility and environmental concepts in the technology and organization of the building materials industry. Stroitel’stvo i rekonstruktsiya. 2009. No. 5 (25), pp. 80–86. (In Russian).
48. Chernyshov E.M., Slavcheva G.S. Evaluation of hygrometric, strength, deformative and thermophysical characteristics of porous concrete. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2003. No. 5–1, pp. 175–185. (In Russian).
49. Ovcharenko G.I., Fomichev Yu.Yu., Frantsen V.B., Viktorov A.V., Samsonov A.Yu., Strel’tsov I.A. Features of silicate brick technology from high calcium ashes of thermal power plants. Polzunovskii vestnik. 2011. No. 1, pp. 156–162. (In Russian).
50. Fomichev Yu.Yu., Muzalevskaya N.V., Ovcharenko G.I., Lyuttseva T.V., Sorokina A.S. Determination of the optimal parameters of lime slaking in high-calcium ash of thermal power plants. Polzunovskii vestnik. 2011. No. 1, pp. 153–156. (In Russian).
51. Ovcharenko G.I., Fomichev Yu.Yu., Frantsen V.B. Features of the formation of the phase composition of silicate stone from high calcium ash of thermal power plants. Polzunovskii vestnik. 2012. No. 1–2, pp. 88–93. (In Russian).
52. Ovcharenko G.I., Gil’miyarov D.I. Phase composition and strength of silicate stone made from lime-ash masses based on acidic ash of thermal power plants. Polzunovskii vestnik. 2012. No. 1–2, pp. 83–88. (In Russian).
53. Ovcharenko G.I., Gil’miyarov D.I. Interrelation of strength and phase composition of autoclaved lime-ash stone. Polzunovskii vestnik. 2013. No. 4–1, pp. 161–163. (In Russian).
54. Kapustin F.L., Ufimtsev V.M., Ermakov A.A., Ivanov V.V., Vishnya B.L., Tsypkin E.B. The increase in ash and slag consumption – the most important factor of reducing negative effect of thermal power plants on environment. Energetik. 2010. No. 4, pp. 34–36. (In Russian).
55. Kapustin F.L., Vishnevskii A.A., Ufimtsev V.M. The use of waste ash and slag mixture in the production of autoclaved gas concrete. Gidrotekhnicheskoe stroitel’stvo. 2017. No. 5, pp. 29–33. (In Russian).
56. Babkov V.V., Kuznetsov D.V., Sakhibgareev R.R., Chuikin A.E., Khalimov R.K., Gaisin A.M. Problems of durability of autoclaved gas concrete. Bashkirskii khimicheskii zhurnal. 2006. Vol. 13. No. 2, pp. 97–99. (In Russian).
57. Babkov V.V., Gabitov A.I., Kuznetsov D.V., Gaisin A.M., Rezvov O.A. Physical and chemical factors affecting the operational state and durability of the exterior walls of buildings based on autoclaved gas concrete blocks. Bashkirskii khimicheskii zhurnal. 2010. Vol. 17. No. 5, pp. 155–158. (In Russian).
58. Babkov V.V., Kuznetsov D.V., Gaisin A.M., Rezvov O.A., Morozova E.V., Arslanbaeva L.S. Problems of reliability of the exterior walls of buildings made from autoclaved aerated concrete blocks and the possibilities of their protection from moisture. Stroitel’nye Materialy [Construction Materials]. 2011. No. 2, pp. 55–57. (In Russian).
59. Bedov A.I., Babkov V.V., Gabitov A.I., Kuznetsov D.V., Gaisin A.M., Rezvov O.A. The possibility of ensuring the operational reliability of the exterior walls of buildings based on autoclaved aerated concrete blocks. Vestnik MGSU. 2011. No. 1–2, pp. 259–262. (In Russian).
60. Gagarin V.G., Pastushkov P.P. Quantitative assessment of energy efficiency of energy-saving measures. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 7–9. (In Russian).
61. Gagarin V.G., Pastushkov P.P. Determination of the calculated moisture content of building materials. Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 8, pp. 28–33. (In Russian).
62. Pastushkov P.P., Gagarin V.G. Studies of the dependence of thermal conductivity on the density and the coefficient of thermal quality of autoclaved gas concrete. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 26–28. (In Russian).
63. Pastushkov P.P., Grinfel’d G.I., Pavlenko N.V., Bespalov A.E., Korkina E.V. Calculated determination of operating humidity of autoclaved gas concrete in various climatic zones of construction. Vestnik MGSU. 2015. No. 2, pp. 60–69. (In Russian).
64. Grinfel’d G.I. Regulatory support for the use of autoclaved cellular concrete in construction. Stroitel’nye Materialy [Construction Materials]. 2013. No. 11, pp. 4–6. (In Russian).
65. Vylegzhanin V.P., Bataev D.K.S., Gaziev M.A., Grinfel’d G.I. Accounting of the effect of carbonization in the calculation of the long-term deformation of cellular concrete bending structures. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 47–52. (In Russian).
66. Gorshkov A.S., Grinfel’d G.I., Mishin V.E., Nikiforov E.S., Vatin N.I. Increasing the thermotechnical uniformity of the walls made of cellular concrete products through the use of polyurethane glue in masonry. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 57–64. (In Russian).
67. Vaganov V.E., Zaharov V.D., Baranova YU.V., Zakrevskaya L.V., Abramov D.V., Nogtev D.S., Kozij V.N. The structure and properties of cellular gas concrete modified with carbon nanostructures Stroitel’nye Materialy [Construction Materials]. 2010. No. 9, pp. 59–61. (In Russian).
68. Leont’ev S.V., Golubev V.A., Shamanov V.A., Kurzanov A.D., Yakovlev G.I., Hazeev D.R. Modification of the structure of heat-insulating autoclaved gas concrete by the dipersion of multi-layer carbon nanotubes. Stroitel’nye Materialy [Construction Materials]. 2016. No. 1–2, pp. 76–83. (In Russian).
69. Leont’ev S.V., Shamanov V.A., Kurzanov A.D., Yakovlev G.I. Multi-criteria optimization of the composition of heat-insulating autoclaved aerated concrete, modified with carbon nanotube dispersion. Stroitel’nye Materialy [Construction Materials]. 2017. No. 1–2, pp. 31–40. (In Russian).
70. Ovchinnikov A.A., Akimov A.V., Hozin R.R. Studies of physicomechanical and operational indicators of modified gas concrete. Informacionnaya sreda vuza. 2016. No. 1 (23), pp. 398–405. (In Russian).
71. Aloyan R.M., Ovchinnikov A.A., Akimov A.V. The study of optimal methods for the modification of autoclaved hardening gas concrete in order to increase its strength. Nauchnoe obozrenie. 2014. No. 11–1, pp. 33–36. (In Russian).
72. Sarajkina K.A., Kurzanov A.D. Durability of autoclaved aerated concrete, reinforced with basalt fiber. Vestnik Permskogo nacional’nogo issledovatel’skogo politekhnicheskogo universiteta. Urbanistika. 2012. No. 4 (8), pp. 103–109. (In Russian).
73. Kuz’mina V.P. Mechanical activation of materials for construction. Lime. Stroitel’nye Materialy [Construction Materials]. 2006. No. 7, pp. 25–27. (In Russian).
74. Tihomirova I.N., Makarov A.V. Mechanical activation of lime-quartz binders. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 4–7. (In Russian).
75. Tihomirova I.N., Makarov A.V. The mechanism of phase formation and hardening of mechanically activated lime-quartz mixtures during steam treatment. Stroitel’nye Materialy [Construction Materials]. 2013. No. 1, pp. 44–49. (In Russian).
76. Urhanova L.A., Tanganov B.B. Chemical activation of lime-silica binders. Tekhnika i tekhnologiya silikatov. 2011. Vol. 18. No. 3, pp. 20–24. (In Russian).
77. Urhanova L.A. Improving the efficiency of production of silicate materials and products using mechanochemical activation of lime-silica binders. Tekhnika i tekhnologiya silikatov. 2011. Vol. 18. No. 2, pp. 2–6. (In Russian).
78. Walczaka P., Szyman´ski P., Róz.ycka A. Autoclaved Aerated Concrete based on fly ash in density 350 kg/m3 as an environmentally friendly material for energy – efficient constructions. Procedia Engineering. 2015. Vol. 122, pp. 39–46.
79. Yuan B., Straub C., Segers S., Yu Q.L., Brouwers H.J.H Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceramics International. 2017. Vol. 43. Iss. 8, pp. 6039–6047.
80. Cai L., Li X., Ma B., Lv Y. Effect of binding materials on carbide slag based high utilization solid-wastes autoclaved aerated concrete (HUS-AAC): Slurry, physic-mechanical property and hydration products. Construction and Building Materials. 2018. Vol. 188, pp. 221–236.
81. Chen Y.-L., Ko M.-S., Chang J.-E., Lin C.-T. Recycling of desulfurization slag for the production of autoclaved aerated concrete. Construction and Building Materials. 2018. Vol. 158, pp. 132–140.
82. Li X. G., Liu Z. L., Lv Y., Cai L. X., Jiang D. B., Jiang W. G., Jian S.i Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete. Construction and Building Materials. 2018. Vol. 178, pp.175–182.
83. Ma B., Cai L., Li X., Jian S. Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products. Journal of Cleaner Production. 2016. Vol. 127, pp. 162–171.
84. Huang X., Ni W., Cui W.-h., Wang Z.-j., Zhu L.-p. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Construction and Building Materials. 2012. Vol. 27, pp. 1–5.
85. Cai L., Ma B., Li X., Lv Y., Liu Z., Jian S. Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: Effect of content and fineness. Construction and Building Materials. 2016. Vol. 128, pp. 361–372.
86. Róz.ycka A., Pichór W. Effect of perlite waste addition on the properties of autoclaved aerated concrete. Construction and Building Materials. 2016. Vol. 120, pp. 65–71.
87. Song Y., Li B., Yang E.-H., Liu Y., Ding T. Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cement & Concrete Composites. 2015. Vol. 56, pp. 51–58.
88. Qin J., Cui C., Yang C., Cui X., Hu B., Huang J. Dewatering of waste lime mud and after calcining its applications in the autoclaved products. Journal of Cleaner Production. 2016. Vol. 113, pp. 355–364.
89. Liu Y., Leong B. S., Hu Z.-T., Yang E.-H. Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent. Construction and Building Materials. 2017. Vol. 148. Pр. 140–147.
90. Wan H., Hu Y., Liu G., Qu Y. Study on the structure and properties of autoclaved aerated concrete produced with the stone-sawing mud. Construction and Building Materials. 2018. Vol. 184, pp. 20–26.

For citation: Nelyubova V.V. Evolution of approaches to design of autoclave hardening materials. Stroitel’nye Materialy [Construction Materials]. 2019. No. 1–2, pp. 88–99. DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-88-99 (In Russian).


Print   Email