Optimal Parameters and Pattern of Magnetic Field of Working Chamber in Apparatus with Vortex Layer

Number of journal: №7-2018
Autors:

Ibragimov R.A.
Korolev E.V
Deberdeev R.Ya.
Leksin V.V.

DOI: https://doi.org/10.31659/0585-430X-2018-761-7-64-67
УДК: 620.1-1/-9

AbstractAbout AuthorsReferences
The comparative data of energy intensity of various grinding devices including devices with a vortex layer are presented. It is established that the energy intensity of devices with a vortex layer is higher by several orders than in the working zone of mills of different types. The dependence of the size of ferromagnetic particles in the working chamber of the apparatus with a vortex layer on the critical filling factor of the working chamber is determined. The method of calculating the optimal configuration of the stationary magnetic field pattern in the working area of devices with a vortex layer is determined. It is revealed that from the point of application of the method of equivalent magnetic charges in the apparatus of vortex layer the most rational is the variant with sinusoidal distribution of magnetic potentials at рп=1. At the same time, a uniform movement of ferromagnetic elements inside the cylindrical magnetic circuit can be ensured.
R.A. IBRAGIMOV1 , Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOROLEV2 , Doctor of Sciences (Engineering);
R.Ya. DEBERDEEV3 , Doctor of Sciences (Engineering),
V.V. LEKSIN3 , Candidate of Sciences (Physics and Mathematics)

1 Kazan State University of Engineering and Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)
2 Moscow State University of Civil Engineering (National Research University) (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
3 Kazan National Research Technological University (68, Karl Marx Street, Kazan, 420015, Russian Federation)

1. Bazhenov Yu.M. Tekhnologiya betona [Technology of concrete]. Moscow: ASV. 2002. 500 p.
2. Poole J.L., Riding K.A., Juenger M.C., Folliard K.J., Schindler A.K., Effects of supplementary cementitious materials on apparent activation energy. Journal of ASTM International. 2010. Vol. 7. No. 9, pp. 1–16. https://doi. org/10.1520/JAI102906.
3. Piradov K.A., Mamayev T.L., Kozhabekov T.A., Marchenko S.M. The physicomechanical, power, power and structural-forming concrete parameters. Beton i zhelezobeton. 2002. No. 2, pp. 10–12. (In Russian).
4. Bezzubtseva M.M., Ruzhev V.A., Yuldashev R.Z. Electromagnetik mechanoactivation of dry construction mixes. International journal of applied and fundamental research. 2013. No. 2, pp. 241–245.
5. Morozov N.M., Stepanov S.V., Hozin V.G. The accelerator of curing of concrete on the basis of galvanic slime. Inzhenerno-stroitel’nyj zhurnal. 2012. No. 8 (34), pp. 67–71.
6. Intini G., Liberti L., Notarnicola M., Di Canio F. Mechanochemical activation of coal fly ash for production of high strength cement conglomerates. Chemistry for Sustainable Development. 2009. Vol. 17. No. 6, pp. 557–561.
7. Lotov V.A., Sudarev YU.A., Kutuzhin V.A. Physical and chemical processes at activation of cement and sand mix in the centrifugal mixer. Izvestiya Vuzov. Fizika. 2011. Vol. 54. No.11/3, pp. 346–349. (In Russian).
8. Plotnikov V.V., Krivoborodov Yu.R. Efficiency of additional grind of cement in the device for mix dispergating. Cement. 1988. No. 12, pp. 16–17. (In Russian).
9. Akharev T., Sanjayan J.G., Cheng Y.B. Effect of admixtures on properties of alkali-activated slag concrete. Cement and Concrete Research. 2001. No. 30(9), pp. 1367–1374.
10. Kumar S., Kumar R., Bandopadhyay A., Alex T.C., Ravi Kumar B., Das S.K., Mehrotra S.P. Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of Portland slag cement. Cement and Concrete Composites. 2008. Vol. 30. No. 8, pp. 679–685.
11. Sulimenko L.M., SHalunenko N.I., Urhanova L.A. Mechanochemical activation of the knitting compositions. Izvestiya Vuzov. Stroitel’stvo. 1995. No. 11, pp. 63–67. (In Russian).
12. Sajedi F., Abdul Razak H. Thermal activation of ordinary Portland cement-slag mortars. Materials and Design. 2010. Vol. 31. No. 9, pp. 4522–4527.
13. Inozemtcev A.S., Korolev E.V., Smirnov V.A. Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight concrete. Structural Concrete. 2017. Vol. 18. No. 1, pp. 67–74.
14. Ibragimov R.A., Korolev E.V., Deberdeev T.R., Leksin V.V. Durability of heavy-weight concrete with Portland cement treated in apparatus of vortex layer. Stroitel’nye Materialy [Construction Materials]. 2017. No.10, pp.28–31. (InRussian).
15. Logvinenko D.D., Shelyakov O.P., Pol’shchikov G.A. Determination of the main parameters of vortex bed apparatus. Chemical and Petroleum Engineering. 1974. Vol. 10. Iss. 1, pp. 15–17.
16. Garkavi M.S., Artamonov A.V., Kolodezhnaya E.V., Troshkina E.A. Cements of low water requirement of a centrifugal and shock grinding and concrete on their basis. Tekhnologii betonov. 2014. No. 10 (99), pp. 25–27. (In Russian). 17. Borunova A.B., Streleckij A.N., Permenov D.G., Leonov A.V. Influence of a dose of mechanical activation on defective structure of artificial graphite. Kolloidnyj zhurnal. 2015. Vol. 77. No. 2, pp. 134. (In Russian).
18. Khint Y.A. Osnovy proizvodstva silikal’tsitnykh izdeliy [Bases of production of a silik of kaltsitny products]. MoscowLeningrad: The state publishing house of literature on construction, architecture and construction materials. 1962. 642 p.
19. Mischenko M.V., Bokov M.M., Grishaev M.E. Activation of technological processes of materials in the device rotary electromagnetic field. Technical Sciences. 2015. No. 2, pp. 3508–3512.

For citation: Ibragimov R.A., Korolev E.V., Deberdeev R.Ya., Leksin V.V. Optimal parameters and pattern of magnetic field of working chamber in apparatus with vortex layer. Stroitel’nye Materialy [Construction Materials]. 2018. No. 7, pp. 64–67. DOI: 10.31659/0585-430X-2018-761-7-64-67 (In Russian).


Print   Email