Properties of Cement Stone with Glinite Additives

Number of journal: №5-2015
Autors:

Rakhimov R.Z.
Rakhimova N.R.
Gaifullin A.R.

DOI: https://doi.org/10.31659/0585-430X-2015-725-5-24-26
УДК: 666.9.046

 

AbstractAbout AuthorsReferences
The expansion of the base of mineral additives in binding substances and materials on their basis can be achieved due to the use of natural pozzolans and activated clays. In recent decades a high pozzolanic activity of metakaolin, the product of thermal activation of kaoline clays, was revealed. But the scarcity of deposits and reserves of kaolin clays prevents its wide-scale production and application. In connection with this, the last years many countries develop the use of pozzolans produced by means of thermal activation of everywhere widespread poly-mineral clays with various content of kaolin or without it. Comparative studies of the influence of addition of glinite from polymineral, not-containing kaolinite clay, which is calcined at 400–800оC and milled up to the specific surface of 200–800 m2/kg, and high-quality meta-kaolin to Portland cement on the compression strength, water absorption and coefficient of cement stone softening have been carried out. It is revealed that the addition of 5–10% of glinite on the basis of non-kaolinite clay, calcined at a certain temperature and milled up to different specific surfaces, to Portland cement can lead to a higher improvement of physical-technical properties of cement stone than corresponding content of meta-kaolin additives.
R.Z. RAKHIMOV, Doctor of Sciences (Engineering), Corresponding Member of RAACS, (This email address is being protected from spambots. You need JavaScript enabled to view it.)
N.R. RAKHIMOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.R. GAIFULLIN, Candidate of Sciences (Engineering)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation)

1. Ramachandran V.S. Concrete Admixtures Handbook (Properties, Science and Technology). Second Edition.
New York: William Andrew Publishing. 1999. 964 р. 2. Rakhimov R.Z., Rakhimovа N.R. Construction and mineral binders past, present and future. Stroitel’nye Materialy [Construction Materials]. 2013. No. 1, pp. 124–128. (In Russian).
3. Scrivener K.L., Nonut A. Hydration of cementitious materials, present and future. Cement and concrete research. 2011. No. 41, pp. 651–665.
4. Rashad A.M. Metakaolin as cementious material: History, scours production and composition. A comprehensive overview. Construction and Building Materials. 2013. Vol. 41, рp. 303–318.
5. Brykov A.S. Metakaolin. Tsement i ego primenenie. 2012. No. 7–8. pp. 36–40. (In Russian).
6. Badogiamics S., Kakali G., Tsivilis S. Metacaolin as supplementary cementitious material. Optimization of kaolin to metakaolin conversion. Journal of Thermal Analysis and Calorimetry. 2005. Vol. 81. No. 2, pр. 457–462.
7. Tironi A., Castellano C.C., Bonavetti V.L, Trezza M.A., Scian A.N., Irassar F.F. Kaolinite calcined clay – Portland cement system: Hydration and properties. Construction and Building Materials. 2014. Vol. 64, pp. 215–221.
8. Habert G., Choupay N., Escadeillas G., Guillame D. et al. Clay content of argillites influence on cement based mortars. Applied Clay Science. 2009. Vol. 43. No. 3–4, pp. 322–330.
9. Сlay-cement. Collection of articles VNIC. Edited by V. Aksenov. M.-L.: Issue 11. The main editorial office building literature. 1935. 171 p.
10. Volzhensky A.V., Boers Y.S., Kolokolnikov V.S. Mineral’nye vyazhushchie veshchestva, tekhnologiya i svoistva [Mineral binders, technology and properties]. Stroyizdat. 1979. 480 p.
11. Mchedlov-Petrosyan O.P. Khimiya neorganicheskikh stroitel’nykh materialov [Chemistry of inorganic building materials]. Moscow: Stroyizdat. 1988. 304 p.
12. Rakhimov R.Z., Rakhimovа N.R. Scientific, experimental, techno-economic and technological conditions for controlling the structure and properties of filled artificial construction of composite materials. Gradostroitel’stvo. 2011. No. 4, pp. 73–79. (In Russian).
13. Zhonge S., Rui Y., Iun D., Tuo S. Influences on nano – particles made from aluminosilicates hydrating cement pastes. Proceedings XIII International Congress on the Chemistry of Cement. Spain. 2011, pp. 306.
14. Kyznecova T. V., Kydryachov I.V., Timachov V.V. Fizicheskaya khimiya vyazhushchikh veshchestv [Physical chemistry binders]. Мoscow: Vysshaya shkola. 1989. 384 p.

For citation: Rakhimov R.Z., Rakhimova N.R., Gaifullin A.R. Properties of cement stone with glinite additives. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 24-26. DOI: https://doi.org/10.31659/0585-430X-2015-725-5-24-26


Print   Email