Inorganic Binding Agents for Mineral Wool Heat Insulation

Number of journal: №5-2015
Autors:

Drozdyuk T.A.
Ayzenshtadt A.M.
Tutygin A.S.
Frolova M.A.

DOI: https://doi.org/10.31659/0585-430X-2015-725-5-86-88
УДК: 691.619.8

 

AbstractAbout AuthorsReferences
The possibility of replacing the phenol-formaldehyde resins by mineral binders for producing the mineral wool heat insulation is considered. As a mineral binder, it is proposed to use the saponite-containing material (SCM) extracted by the method of electrolytic coagulation from the pulp of the tailing damp of industrial ore-dressing of the Lomonosov Diamond Deposit (Arkhangelsk Oblast). Optimal regimes of mechanical activation of SCM at the planetary ball mill PM-100 for manufacturing the binder for mineral wool heat insulating materials have been selected. The assessment of binding properties of SCM was made by calorimetric investigations, which showed that the specific enthalpy of SCM hydration is comparable with the value of hydration heat of the main clinker mineral (dicalcium silicate). The tests of prototypes of mineral wool heat insulation with the mineral binder show that they have good heat insulation property and are not destroyed under the effect of high temperature, at that, this material is environmentally friendly.
T.A. DROZDYUK, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.M. AYZENSHTADT, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.S. TUTYGIN, Candidate of Sciences (Engineering)
M.A. FROLOVA, Candidate of Sciences (Chemistry)

Northern (Arctic) Federal University (NAFU) named after M.V. Lomonosov (22, Severnaya Dvina Embankment, Arkhangelsk, 163002, Russian Federation)

1. Gorlov Yu. P. Tekhnologiya teploizolyatsionnykh i akusticheskikh materialov i izdelii [Technology of thermal insulation and acoustic materials and products]. Moscow: Vysshaya shkola. 1989. 384 p.
2. Kardashov D. A. Sinteticheskiye klei [Synthetic adhesives]. Moscow: Chemistry. 1976. 504 p.
3. Tutygin A.S., Aisenstadt M.A., Aisenstadt A.M., Makhova T.A. Influence of the nature of the electrolyte in the coagulation process saponite-containing slurry. Geoekologiya. 2012. No. 5, pp. 379–383. (In Russian).
4. Korshunov A. A. Geo-ecological study of storage and use of tailings kimberlite ores (for example, diamond deposits named after Lomonosov). Cand. Diss. (Engineering). Arkhangelsk. 2010. 125 p. (In Russian).
5. Abramovskaya I.R., Aisenstadt A.M., Lesovik V.S., Veshnyakova L.A., Frolova M.A., Kazlitin S.A. Calculation of energy consumption rocks – as raw material for the production of building materials. Promyshlennoye i grazhdanskoye stroitel’stvo. 2012. No. 10, pp. 23–25. (In Russian).
6. Lesovik V.S. Povysheniye effektivnosti proizvodstva stroitel’nykh materialov s uchetom genezisa [Improving the efficiency of the production of building materials with regard to the genesis]. Moscow: ASV. 2006. 526 p.
7. Glaser A.M. Amorphous and nanocrystalline structures: similarities, differences, mutual transitions. Rossiiskii khimicheskii zhurnal. 2002. Vol. XLVI. No. 5, pp. 57–63. (In Russian).
8. Strokova V.V., Cherevatova A.V., Zhernovski I.V., Voitovych E.V. Peculiarities of phase formation in a composite nanostructured gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 9–12. (In Russian).
9. Rakhimbaev I.Sh. Dependence of the strength of the cement matrix of concrete hydration heat. Cand. Diss. (Engineering). Belgorod. 2012. 133 p. (In Russian).

For citation: Drozdyuk T.A., Ayzenshtadt A.M., Tutygin A.S., Frolova M.A. Inorganic Binding Agents for Mineral Wool Heat Insulation. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 86-88. DOI: https://doi.org/10.31659/0585-430X-2015-725-5-86-88


Print   Email