Deformations of High-Strength Lightweight Concrete Having Hollow Microspheres and Method of Reduce Them

Number of journal: 9-2015
Autors:

Inozemtcev A.S.
Korolev E.V.

DOI: https://doi.org/10.31659/0585-430X-2015-729-9-23-30
УДК: 620.173.21+691.32:691.542

 

AbstractAbout AuthorsReferences
The paper presents the researching results of deformation properties of the high-strength lightweight concrete with hollow microspheres. The method of increasing the fracture toughness of high-strength lightweight concrete with aluminosilicate microspheres by using the modifier as a coupling agent on the surface of the microparticles of aggregate is proposed. The hollow microspheres are perspective filler for lightweight concrete with high performance characteristics; the increasing of content of the spherical microparticles in the concrete composition promotes to forming close-packed structure with low deformations. The coefficient of fracture toughness of the high-strength lightweight concrete is comparable with the same parameter for fine-grained high-strength heavy concrete (more than 0.1) and is limited by strength characteristics of micrometric particles of aggregate. It is to create the active iron-silica shell on the surface of the hollow filler, which interacts with the major components and products of the cement hydration and reinforces the phase boundary. The proposed method of modifying allows to reduce the longitudinal and transverse deformations of the high-strength lightweight concrete at 7–12% and 8.5–16.5% respectively. The elastic modulus of the high-strength lightweight concrete is 6–8.5 GPa, and Poisson’s ratio is 0.08–0.14. The nanomodifier reduces the intensity of the cracking under the influence of shrinkage stresses of high-strength lightweight concrete by 56.9%.
A.S. INOZEMTCEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.V. KOROLEV, Doctor of Sciences (Engineering), director, research and educational center «Nanomaterials and Nanotechnology»

Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Wilson H.S., Malhotra V.M. Development of high strength lightweight concrete for structural applications. International Journal of Cement Composites and Lightweight Concrete. 1988. Vol. 10. Iss. 2, pp. 79–90.
2. Kılıç A., Atiş  C.D., Yaşar E., Özcan F. High-strength lightweight concrete made with scoria aggregate containing mineral admixtures. Cement and Concrete Research. 2003. Vol. 33. Iss. 10, pp. 1595–1599.
3. Costa H., Juґlio E., Lourenзo J. New approach for shrinkage prediction of high-strength lightweight aggregate concrete. Construction and Building Materials. 2012. Vol. 35, pp. 84–91.
4. Korolev E.V., Smirnov V.A. Using particle systems to model the building materials. Advanced Materials Research. 2013. Vol. 746, pp. 277–280.
5. Tany1ld1z1 H. Post-fire behavior of structural lightweight concrete designed by Taguchi method. Construction and Building Materials. 2014. Vol. 68, pp. 565–571.
6. Ming Kun Y.M., Bin M.H., Chin A.B., Chian Y.M. Effects of heat treatment on oil palm shell coarse aggregates for high strength lightweight concrete. Materials & Design. 2014. Vol. 54, pp. 702–707.
7. Daniel M., Franco Z., lvaro P., Mauricio L. High strength lightweight concrete (HSLC): Challenges when moving from the laboratory to the field. Construction and Building Materials. 2014. Vol. 56, pp. 44–52.
8. Kockal N.U., Ozturan T. Strength and elastic properties of structural lightweight concretes. Materials & Design. 2011. Vol. 32 (4), pp. 2396–2403.
9. Sajedi F., Shafigh P. High-Strength Lightweight Concrete Using Leca, Silica Fume, and Limestone. Arabian Journal for Science and Engineering. 2012. Vol. 37. No. 7, pp. 1885–1893.
10. Inozemtcev A.S., Korolev E.V. Hollow microspheres is an efficient filler for high-strength lightweight concrete. Promyshlennoe i grazhdanskoe stroitel’stvo. 2013. No. 10, pp. 80–83. (In Russian).
11. Oreshkin D.V., Semenov V.S., Rozovskaya T.A. Light-weight backfill mortars with antifreeze additives for the permafrost conditions. Neftyanoe khozyaistvo. 2014. Vol. 4, pp. 42–45. (In Russian).
12. Oreshkin D.V. Effective lightweight tamping solutions for the conditions of abnormally low reservoir pressures and permafrost. Neftyanoe khozyaistvo. 2008. No. 1, pp. 50–53. (In Russian).
13. Semenov V., Rozovskaya T., Oreshkin D. Properties of the dry masonry mixtures with hollow ceramics microspheres. Advanced Materials Research. 2014. Vol. 860–863, pp. 1244–1247.
14. Ponomarev A.N. High quality concrete. Analysis of the opportunities and the practice of using nanotechnology methods. Inzhenerno-stroitel’nyi zhurnal. 2009. No. 6, pp. 25–33. (In Russian).
15. Inozemtcev A.S. High-strength lightweight concrete mixtures based on hollow microspheres: technological features and industrial experience of preparation. IOP Conference Series Materials Science and Engineering. 2015. Vol. 71 (1). http://iopscience.iop.org/1757-899X/71/1/012028 Open access.
16. Inozemtcev A.S. Average density and porosity of highstrength lightweight concrete. Inzhenerno-stroitel’nyi zhurnal. 2014. No. 7 (51), pp. 31–37. (In Russian).
17. Leshchinskii M.Yu. Ispytanie betonov [Test of the concrete]. Moscow: Stroiizdat. 1980. 360 p.
18. Sheikin A.E. On the structure and fracture of concrete. Beton i zhelezobeton. 1972. No. 10, pp. 18–20. (In Russian).
19. Grishina A.N., Korolev E.V. Efficient nano-scale admixture for foam stability improvement of cellular concretes. Vestnik MGSU. 2012. No. 10, pp. 159–165. (In Russian).
20. Inozemtcev A.S., Korolev E.V. Structuring and properties of the structural high-strength lightweight concretes with nanomodifier BisNanoActivus. Stroitel’nye Materialy [Construction Materials]. No. 1–2, pp. 33–37. (In Russian).

For citation: Inozemtcev A.S., Korolev E.V. Deformations of High-Strength Lightweight Concrete Having Hollow Microspheres and Method of Reduce Them. Stroitel’nye Materialy [Construction Materials]. 2015. No. 9, pp. 23-30. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2015-729-9-23-30


Print   Email