Substantiation of One of the Methods for Improving the Structure of Foam Concretes

Number of journal: №5-2018
Autors:

Morgun V.N.
Morgun L.V.

DOI: https://doi.org/10.31659/0585-430X-2018-759-5-24-26
УДК: 691.326

AbstractAbout AuthorsReferences
The relevance of development of the theory and practice of gas-filled concretes is reflected. It is shown that till now the modern construction materials science doesn’t have the necessary volume of knowledge, relying on which the design of the composition of foam concretes is possible. Differences in the features of the formation of the structure of interporous partitions in foam- and fibrous foam concrete mixes are considered from the position of the theory of fractal clusters. It is shown that the length of the fiber is the most important parameter that predetermines the sizes of clusters formed in inter-porous partitions of gas-filled concrete. It is the length of the fiber that causes an increase in the density of inter-porous partitions and the value of plastic strength in foam concrete mixtures.
V.N. MORGUN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
L.V. MORGUN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.

1 Southern Federal University (05/42, Bolshaya Sadovaya Street, Rostov-on-Don, 344006, Russian Federation) 
2 Don State Technical University (1, Gagarina Square, Rostov-on-Don, 344010, Russian Federation)

1. Shakhova L.D. Tekhnologiya penobetona. Teoriya i praktika [Technology of foam concrete. Theory and practice]. Moscow: ASV. 2010. 248 p. 

2. Krasnikov N.M. Khozin V.G. New method of manufacture of foam concrete. Izvestiya KazGASU. 2009. No. 1 (11), pp 266–272 (In Russian). 

3. Bikbau M.Ya. Nanotekhnologii v proizvodstve tsementa [Nanotechnology in cement production]. Moscow: Moscow Institute of material science and effective technologies. 2008. 768 p. 

4. Pellenq R.J.-M., Kushima A., Shahsavari R., van Vliet K.L., Buehler M.J., Yip S., Ulm F.-J. A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences. 2009. Vol. 106. No. 38, pp. 16102–16107. 

5. Gvozdikova V.I. World energy crisis and its impact on the energy of Russia. Molodoy ucheniy. 2017. No. 2, pp. 388–391. URL https://moluch.ru/archive/136/38027/ (date of access: 18.01.2018). (In Russian). 

6. Stepanova V.F. Dolgovechnost’ betona [Durability of concrete]. Moscow: ASV. 2014. 126 p. 

7. Komokhov P.G. Hardening processes of mineral binders in the aspect of structural mechanics of concrete. Modern problems of building materials. Perspective directions in theory and practice of mineral binders and materials on their basis: Second academic readings. RAACS. Kazan. Part 3. 1996, pp. 3–8. (In Russian). 

8. Roco M.C., Williams R.S., Alivisatos P. Nanotekhnologiya v blizhayshem desyatiletii [Nanotechnology in the next decade]. Ed. by R.A. Andrievskiy. Moscow: Mir. 2002. 287 p. 

9. Komokhov P.G. Physics and mechanics of fracture in the formation of the strength of cement stone. Tsement. 1991. No. 7, 8, pp. 4–10. (In Russian). 

10. Krasilnikov K.G., Nikitina L.V., Skoblinsky N.N. Physical chemistry of their own deformations of the cement stone. Moscow: Stroyizdat. 1980. 256 p. 

11. Morgun V.N., Morgun L.V. Structure of interstitial partitions in foam concrete mixes. Stroitel’nye Materialy [Construction Materials]. 2014. No. 4, pp. 84–86. (In Russian). 

12. Ananyeva E.S., Novikov E.A., Anan’ev I.M., Markin V.B., Ishkov A.V. Application of the fractal-cluster approach to analyze the structure and prediction of properties of polymer nanocomposites. Polzunovskii Vestnik. 2012. No. 1, pp. 10–14. (In Russian). 

13. Novikov V.U., Kozlov G.V. Polyfructanes structure of filled polymers. Plasticheskie Massy. 2004. No. 4, pp. 27–38. (In Russian). 

14. Olemskoy A.I., Flath A.I. The use of the concept of the fractal in the physics of condensed matter. Uspekhi fizicheskikh nauk. 1993. Vol. 12. No. 163, pp. 1–50. (In Russian). 

15. Smirnov B.M. Fizika fraktal’nykh klasterov [Physics of fractal clusters]. Moscow: Nauka. 1991. 136 p. 

16. Morgun L.V. Penobeton [Foam Concrete]. Rostov-on-don: Rostov State University of Civil Engineering. 2012. 154 p. 

17. Androsov V.F. Dyeing synthetic fibers [The dyeing of synthetic fibers]. Moscow: Legkaya i pishchevaya promyshlennost’. 1984. 272 p.

For citation: Morgun V.N., Morgun L.V. Substantiation of one of the methods for improving the structure of foam concretes. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 24–26. DOI: https://doi.org/10.31659/0585-430X-2018-759-5-24-26 (In Russian).


Print   Email