Strength and Strain-Stress Properties of Fiber Concrete with Macro-fiber on the Basis of Polyolefins

Number of journal: №12-2018
Autors:

Smirnova O.M.
Kharitonov A.M.

DOI: https://doi.org/10.31659/0585-430X-2018-766-12-44-48
УДК: 691.5

AbstractAbout AuthorsReferences
Dispersed reinforcement of concrete is an effective method for increasing its tensile strength. For this purpose it is possible to use fiber on a steel, polymeric or mineral basis. The problem of application of polymer-based macro-fiber in cement heavy concrete compositions, the advantage of which is a good corrosion resistance compared to steel fiber, is relevant. The paper studies the effect of polyolefin-based macro-fiber on the mechanical properties of heavy concrete of B25–B50 strength classes. Correlation dependences of concrete strength properties (compression strength, bending tensile strength, uniaxial tensile strength) and deformation properties (modulus of elasticity, Poisson’s ratio) on the water-cement ratio and the duration of hardening are established. An increase in tensile strength when bending samples containing fiber was observed in the entire studied range of water-cement ratios from 0.5 to 0.31 compared to the control composition. At the same time, a more intensive increase in tensile strength during the bending occurred with a decrease in the water-cement ratio. This can be explained by the fact that the density of cement stone increased with a decrease in the water-cement ratio, which led to an increase in friction forces between the cement stone and fiber. The analysis of the nature of the destruction of samples with fiber at different water-cement ratio showed that the ripped fiber is absent and pulling micro-fiber from concrete is observed at its destruction. It can be assumed that the resistance to the friction forces between the fiber and cement stone is less than the resistance of the fiber material to stretching. Therefore, to increase the efficiency of polyolefin macro-fiber in heavy concrete it is necessary to improve the structure of cement stone and concrete in order to increase its density.
O.M. SMIRNOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.M. KHARITONOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Saint Petersburg Mining University (2, 21-st Line, Vasilyevsky Island, Saint Petersburg, 199106, Russian Federation)
2 Saint-Petersburg State University of Architecture and Civil Engineering (4, 2-nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)

1. Weber Wolfgang E., Viktor Mechtcherine. Modeling the dynamic properties of fibre-reinforced concrete with different coating technologies of multifilament yarns. Cement and Concrete Composites. 2016. Vol. 73, pp. 257–266.
2. Смирнова О.М. Влияние дисперсного армирования синтетическим макроволокном на прочность дорожного бетона // Вестник науки и образования Северо-Запада России. 2016. Т. 2. № 3. С. 15–19.
2. Smirnova О.М. Influence of dispersed reinforcement with synthetic macrofibre on the strength of road concrete. Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2016. Vol. 2. No. 3, pp. 15–19. (In Russian).
3. Weber W., Zastrau B.W. Analytical description of FRC subjected to transient loads. Journal of Theoretical and Applied Mechanics. 2013. 51 (1), pp. 183–194.
4. Шангина Н.Н., Харитонов А.М. Опыт применения стеклофибробетона для реставрации декорированного подвесного потолка станции метрополитена. Материалы семинара «Проблемы реставрации и обеспечения сохранности памятников культуры и истории». Санкт-Петербург. 2012. № 2011. С. 18–27.
4. Shangina N.N., Kharitonov A.M. Experience of the use of glass fiber reinforced concrete for the restoration of the decorated suspended ceiling of the metro station. Materials of the seminar «Problems of restoration and preservation of monuments of culture and history». Saint-Petersburg. 2012. No. 2011, pp. 18–27. (In Russian).
5. Пухаренко Ю.В., Голубев В.Ю. О вязкости разрушения фибробетона // Вестник гражданских инженеров. 2008. № 3. С. 80–83.
5. Pukharenko Yu.V., Golubev V.Yu. On the fracture toughness of fiber reinforced concrete. Vestnik grazhdanskix inzhenerov. 2008. No. 3, pp. 80–83. (In Russian).
6. Пухаренко Ю.В., Пантелеев Д.А., Морозов В.И., Магдеев У.Х. Прочность и деформативность полиармированного фибробетона с применением аморфной металлической фибры // Academia. Архитектура и строительство. 2016. № 1. С. 107–111.
6. Pukharenko Yu.V., Panteleev D.A., Morozov I.V., Magdeev W.H. Strength and deformability of poly-reinforced fiber concrete with the use of amorphous metal fiber. Academia. Arxitektura i stroitel’stvo. 2016. No. 1, pp. 107–111. (In Russian).
7. Kharitonov A., Shangina N., Glass Fibre Reinforced concrete as a material for large hanging ceiling designs in underground station restorations. Proceedings of the International Conference, Concrete in the Low Carbon Era. Scotland, UK. University of Dundee. 9–11 July 2012, pp. 823–831.
8. Смирнова О.М., Андреева Е.В. Свойства тяжелого бетона, дисперсно-армированного синтетическим микроволокном // Строительные материалы. 2016. № 11. С. 17–20.
8. Smirnova О.М., Andreeva E.V. Properties of heavy concrete disperse-reinforced with synthetic micro-fiber. Stroitel’nye Materialy [Construction Materials]. 2016. No. 11, pp. 17–20. (In Russian).
9. Yan L., Pendleton R.L., Jenkins C.H. Interface morphologies in polyolefin fiber reinforced concrete composites. Composites, Part A. 1998. Vol. 29A, pp. 643–650.
10. Yan L., Jenkins C.H., Pendleton R.L. Polyоlefin fiber-reinforced concrete composites: Part II. Damping and interface debonding. Cement and Concrete Research. 2000. Vol. 30 (3), pp. 403–410.
11. Tagnit-Hamou A., Vanhove Y., Petrov N. Microstructural analysis of the bond mechanism between polyolefin fibers and cement pastes. Cement and Concrete research. 2005. Vol. 35 (2), pp. 364–370.
12. Конференция «Полиолефины 2017» // Полимерные трубы. 2017. № 4 (58). С. 44–46.
12. Conference «Polyolefins 2017». Polimernye truby. 2017. No. 4 (58), pp. 44–46. (In Russian).
13. Zhao Ron (Rongguo), Wadsworth Larry C. Study of polypropylene/poly(ethylene terephthalate) bicomponent melt-blowing process: The fiber temperature and elongational viscosity profiles of the spinline. Journal of Applied Polymer Science. 2003. Vol. 89, pp. 1145–1150. https://doi.org/10.1002/app.12321
14. Cho H.H., Kang K.H., Ito H., Kikutani T. Fine structure and physical properties of polyethylene/poly(ethylene terephthalate) bicomponent fibers in high-speed spinning. I. Polyethylene sheath/poly(ethylene terephthalate) core fibers. Journal of Applied Polymer Science. 2000. Vol. 77, pp. 2254–2266. https://doi.org/10.1002/1097-4628(20000906)77:10<2254::AID-APP19>3.0.CO;2-M
15. Kaufmann Josef, Lübben Jörn, Eugen Schwitter. Mechanical reinforcement of concrete with bi-component fibers. Composites Part A: Applied Science and Manufacturing. 2007. Vol. 38 (9), pp. 1975–1984.
16. Pyle Russell W. Product and method for incorporating synthetic polymer fibers into cement mixtures. U.S. Patent No. 6,258,159. 10 Jul. 2001.
17. Chatterji Jiten, et al. Cementing wells with crack and shatter resistant cement. U.S. Patent No. 6,308,777. 30 Oct. 2001.
18. Linfa Yan, Pendleton R.L., Jenkins C.H.M.. «Interface morphologies in polyolefin fiber reinforced concrete composites.» Composites Part A: Applied Science and Manufacturing. 1998. Vol. 29.5, pp. 643–650.
19. Ta-Yuan Han, et al. Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume. Materials&Design. 2012. Vol. 37, pp. 569–576.
20. Liberato Ferrara, Ozyurt Nilufer, Prisco Marco Di. High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow induced” fibre orientation. Materials and Structures. 2011. Vol. 44 (1), pp. 109–128.

For citation: Smirnova O.M., Kharitonov A.M. Strength and strain-stress properties of fiber concrete with macro-fiber on the basis of polyolefins. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 44–48. DOI: https://doi.org/10.31659/0585-430X-2018-766-12-44-48 (In Russian).


Print   Email