Research of Structure and Properties of Nanomodified Ceramics

Number of journal: №1-2-2018
Autors:

Ginchitskaya Yu.N.,
Yakovlev G.I.,
Drochitka R.,
Pervushin G.N.,
Khritankov V.F.,
Kolbina D.S.,
Balobanova Yu.A.

DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-27-32
УДК: 691.421.24 : 539.2

AbstractAbout the AuthorReferences
Researches of properties and structure of building ceramics on the basis of low-melting clays with additives of multilayered carbon nanotubes (MWCNTs) are given in this article. The results of the research show that adding of a water dispersion of MWCNTs to the composition of ceramic charge increases the strength characteristics of the material due to structural change. The compressive strength of the modified samples increases by 109%, the splitting tensile strength increases by 123%. The conducted researches confirm that the corrosion resistance of ceramic bricks with the adding of MWCNTs in the amount of 0.001% increases. It will allow reducing the possibility of peeling and destruction of bricklaying during salt corrosion.
Yu.N. GINCHITSKAYA1, Engineer,
G.I. YAKOVLEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R. DROCHITKA2, DSc;
G.N. PERVUSHIN1, Doctor of Sciences (Engineering);
V.F. KHRITANKOV3, Doctor of Sciences (Engineering);
D.S. KOLBINA1, student
Yu.A. BALOBANOVA1, Master Student 

1 Kalashnikov Izhevsk State Technical University (7, Studencheskaya Street, Izhevsk, 426069, Russian Federation) 
2 Brno University of Technology (Antonínská 548/1, 60190, Brno, Czech Republic) 
3 Novosibirsk State Agrarian University (160, Dobrolyubova Street, Novosibirsk, 630039, Russian Federation)

1. Stryszewska T. The change in selected properties of ceramic materials obtained from ceramic brick treated by the sulphate and chloride ions. Construction and Building Materials. 2014. Vol. 66, pp. 268–274.
2. Fiertak M., Kanka S. Methods and interpretation of material testing in power sector chimneys. In: Proceedings of the 5-th international conference concrete and concrete structures. Zilina. 2009, pp. 91–98.
3. Stryszewska T., Wodnicka K. The texture and microstructure of ceramic brick contaminated by chloride and sulfate ions. Materia y Ceramiczne. 2013. Vol. 65. Iss. 1, pp. 87–91.
4. Yakovlev G.I., Poljanskih I.S., Machjulajtis R., Kerene Ja., Malajshkene Ju., Kizinievich O., Shajbadullina A.V., Gordina A.F. Nanomodofication of ceramic materials for construction purposes. Stroitel’nye Materialy [Construction Materials]. 2013. No. 4, pp. 62–64. (In Russian).
5. Yakovlev G.I., Poljanskih I.S., Shajbadullina A.V., Gordina A.F., Bochkareva T.V., Zajceva E.A. Prospects nanomodified ceramic materials for construction application. Intellektual’nye sistemy v proizvodstve. 2013. No. 1, pp. 189–192. (In Russian).
6. Yakovlev G.I., Pervushin G.N., Poljanskih I.S., Kerene Ja., Machyulaitis R., Pudov I.A., Sen’kov S.A., Politaeva A.I., Gordina A.F., Shajbadullina A.V. Nanostrukturirovanie kompozitov v stroitel’nom materialovedenii: monografiya [Nanostructuring of composites in building materials science: monograph] Izhevsk: Kalashnikov Izhevsk State Technical University. 2014. 196 p.
7. Bogdanov A.N., Abdrakhmanova L.A., Khozin V.G. Modification of ceramic masses with plasticizing additives. Jubilee International Scientific and Practical Conference, dedicated to the 60th anniversary of BSTU named after Shukhov “High technology and innovation” XXI scientific readings. Belgorod: BSTU. 2014, pp. 46–49. (In Russian).
8. Dillon F.C., Moghal J., Koos A., Lozano J.G., Miranda L., Porwal H., Reece M.J., Grobert N. Ceramic composites from mesoporous silica coated multi-wall carbon nanotubes. Microporous and Mesoporous Materials. 2015. Vol. 217, pp. 159–166.
9. Qing Y., Zhou W., Huang Sh., Huang Zh., Luo F., Zhu D. Microwave absorbing ceramic coatings with multi-walled carbon nanotubes and ceramic powder by polymer pyrolysis route. Composites Science and Technology. 2013. No. 89, pp. 10–14.
10. Dassios K.G., Bonnefont G., Fantozzi G., Matikas T.E. Novel highly scalable carbon nanotube-strengthened ceramics by high shear compaction and spark plasma sintering. Journal of the European Ceramic Society. 2015. No. 35, pp. 2599–2606.
11. Pudov I.A. Nanomodification of Portland cement with aqueous dispersions of carbon nanotubes. Cand. Diss. (Engineering). Kazan. 2013. 185 p. (In Russian).
12. Stryszewska T., Kanka S. Corrosion products among brick and concrete as threat to structure durability of industrial chimneys. Materia y Ceramiczne. 2013. No. 3, pp. 378–386.
13. Yakovlev G.I., Mikhailov Yu.O., Ginchitskaya Yu.N., Kizinievich O., Taibakhtina P.A., Balobanova Yu.A. The construction ceramics modified by dispersions of multiwalled carbon nanotubes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 1–2, pp. 10–13. (In Russian).
14. Yakovlev G.I., Ginchitskaya Yu.N., Kizinievich O., Kizinievich V., Gordina A.F. Influence of dispersions of multilayer carbon nano-tubes on physical-mechanical characteristics and structure of building ceramics. Stroitel’nye Materialy [Construction Materials]. 2016. No. 8, pp. 25–29. (In Russian).
15. Khadzhi V.E., Tsinober L.I., Shterenlikht L.M. Sintez mineralov. Tom 2 [Synthesis of minerals. Volume 2] Moscow: Nedra. 1987. 256 p.

For citation: Ginchitskaya Yu.N., Yakovlev G.I., Drochitka R., Pervushin G.N., Khritankov V.F., Kolbina D.S., Balobanova Yu.A. Research of structure and properties of nanomodified ceramics. Stroitel’nye Materialy [Construction materials]. 2018. No. 1–2, pp. 27–32. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-27-32 (In Russian).


Print   Email