Energy Renovation of Typical Concrete Apartment Building in Estonia by Using Wooden Modular Element

Number of journal: №10-2018
Autors:

Targo Kalamees
Peep Pihelo
Kalle Kuusk

DOI: https://doi.org/10.31659/0585-430X-2018-764-10-13-17
УДК: 728

AbstractAbout AuthorsReferences
The multi-storey large concrete element building is renovated to nearly Zero Energy Building (nZEB) in Estonia by using prefabricated large insulation elements for walls and roof. The study of that project includes complex of measures: hygrothermal measurements and analysis, highly insulated facade and roof elements, the full modernisation of heating and ventilation systems, and on site heat and electricity production from renewable energy sources. Ventilation ducts are installed into the modular panels to minimize supply ductworks in apartments. All technical systems will be equipped with monitoring systems and data will be logged periodically. The designed heat transfer coefficient of is Kwall≤0.11 W/(m2.K) for walls, Kroof≤0.1 W/(m2.K) for roof and Kwindow≤0.8 W/(m2.K) for windows and external doors. The analyse, design and renovation process of the integrated nZEB design method gave us a unique experience, showing weak links in the chain and helping to prevent faults in the whole process in the future.
TARGO KALAMEES, Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)
PEEP PIHELO, MSc
KALLE KUUSK, PhD

Nearly Zero Energy Building research group, Tallinn University of Technology (5, Ehitajate tee, 19086 Tallinn, Estonia)

1. European Commission, Energy Roadmap 2050 Impact assessment and scenario analysis, Brussels, 2011.
2. Engvall K., Lampa E., Levin P., Wickman P., Öfverholm E. Interaction between building design, management, household and individual factors in relation to energy use for space heating in apartment buildings. Energy and Buildings. Vol. 81. 2014, pp. 457–465.
3. Paiho S., Pinto I.S., Jimenez C. An energetic analysis of a multifunctional façade system for energy efficient retrofitting of residential buildings in cold climates of Finland and Russia, Sustain. Sustainable Cities and Society. 2015. Vol. 15, pp. 75–85. DOI: https://doi.org/10.1016/j.scs.2014.12.005
4. Arumägi E., Kalamees T. Analysis of energy economic renovation for historic wooden apartment buildings in cold climates. Applied Energy. 2014. Vol. 115, pp. 540–548.
5. Kuusk K., Kalamees T. Retrofit cost-effectiveness: Estonian apartment buildings. Building Research & Information. 2016. Vol. 44. Iss. 8, pp. 920–934. DOI: https://doi.org/10.1080/09613218.2016.1103117
6. Ilomets S., Kuusk K., Paap L., Arumägi E., Kalamees T. Impact of linear thermal bridges on thermal transmittance of renovated apartment buildings. Journal of Civil Engineering and Management. 2016. 23(1):1-9. DOI: 10.3846/13923730.2014.976259
7. Ilomets S., Kalamees T. Evaluation of the criticality of thermal bridges. Journal of Building Pathology and Rehabilitation. 2016. 1 (1). 1–13. DOI: 10.1007/s41024-016-0005-6.
8. Kuusk K., Kalamees T., Link S., Ilomets S. Case-study analysis of concrete large-panel apartment building at pre- and post low-budget energy-renovation. Journal of Civil Engineering and Management. 2017. 23 (1), pp. 67–75. DOI: https://doi.org/10.3846/13923730.2014.975741
9. Alev Ü., Allikmaa A., Kalamees T. Potential for finance and energy savings of detached houses in Estonia. Energy Procedia. 2015. Vol. 78, pp. 907–912. https://doi.org/10.1016/j.egypro.2015.11.017
10. Kalamees T., Lupisec A., Mørck O.C., Borodinecs A., Aalmeida M., Rovers R., Veld P.O. ’t, Kuusk K., Silva S. What kind of heat loss requirements nZEB and deep renovation sets for building envelope? IOP Conf. Series: Materials Science and Engineering 251 (2017) 012056 doi:10.1088/1757-899X/251/1/012056
11. Matic D., Calzada J.R., Eric M., Babin M. Economically feasible energy refurbishment of prefabricated building in Belgrade. Energy Build. 2015. Vol. 98, pp. 74–81.
12. Botici A.A., Ungureanu V., Ciutina A., Botici A., Dubina D., Sustainable retrofitting of large panel prefabricated concrete residential buildings. CESB 2013 Sustain. Build. Refurb. Next Gener. Prague. Czech Republic. 26–28 June 2013. http://cesb.cz/cesb13/proceedings/1_refurbishment/CESB13_1277.pdf
13. Jurelionis A., Seduikyte L. Multifamily building refurbishment process in Lithuania and other European countries. 10th Int. Conf. Mod. Build. Mater. Struct. Tech. Vilnius. Lithuania. 19–21 May 2010, pp. 106–111.
14. Sandberg K., Orskaug T., Andersson A. Prefabricated Wood Elements for Sustainable Renovation of Residential Building Façades. Energy Procedia. 2016. Vol. 96, pp. 756–767.
15. Ruud S., Östman L., Orädd P. Energy Savings for a Wood Based Modular Pre-fabricated Façade Refurbishment System Compared to Other Measures. Energy Procedia. 2016. Vol. 96, pp. 768–778.
16. Ott S., Loebus S., Winter S. Vorgefertigte Holzfassaden-elemente in der energetischen Modernisierung. Bautechnik. 2013. Vol. 90, pp. 26–33.
17. Mjörnell K. Experience from Using Prefabricated Elements for Adding Insulation and Upgrading of External Façades. In book: Case Studies, Edition: volume 7, Chapter: Experience from Using Prefabricated. Editors: João M.P.Q. Delgado Editor Springer. pp. 95–114. DOI: 10.1007/978-981-10-0639-5
18. Silva P.C.P., Almeida M., Bragança L., Mesquita V. Development of prefabricated retrofit module towards nZEB. Energy Build. 2013. Vol. 56, pp. 115–125.
19. Veld P.O. MORE-CONNECT: Development and Advanced Prefabrication of Innovative, Multifunctional Building Envelope Elements for Modular Retrofitting and Smart Connections. Energy Procedia. 2015. Vol. 78, pp. 1057–1062.
20. EN ISO 13788, Hygrothermal performance of building components and building elements – Internal surface temperature to avoid critical surface humidity and interstitial condensation – Calculation methods. 2012. 48.
21. Kalamees T. Critical values for the temperature factor to assess thermal bridges. Proceedings of the Estonian Academy of Sciences. 2006. Vol. 12, pp. 218–229.
22. 15 RT I, 05.06.2015, Energiatõhususe miinimumnõuded (Minimum requirements for buildings energy performance), 2015.
23. nZEB Retrofit of a Concrete Large Panel Apartment Building. Energy Procedia. 2015, Vol. 78, pp. 985–990.
24. Rose J., Thomsen K.E., Mørck O.C., Kuusk K., Kalamees T. The Economic Challenges of Deep Energy Renovation-Differences, Similarities, and Possible Solutions in Northern Europe: Estonia and Denmark, ASHRAE Trans. 122 (2016) 58–68.

For citation: Targo Kalamees, Peep Pihelo, Kalle Kuusk. Energy renovation of typical concrete apartment building in Estonia by using wooden modular element. Stroitel’nye Materialy [Construction Materials]. 2018. No. 10, pp. 13–17. DOI: https://doi.org/10.31659/0585-430X-2018-764-10-13-17


Print   Email