Development of Scientific Bases for Production of Silicate Autoclave Materials Using Clay Raw Materials

Number of journal: №9-2018
Autors:

Volodchenko A.N.
Strokova V.V.

DOI: https://doi.org/10.31659/0585-430X-2018-763-9-25-31
УДК: 691.316

 

AbstractAbout AuthorsReferences
At present the development of the production of autoclave silicate materials is restrained by high energy intensity and depletion of quartz sand reserves, which is a traditional raw material base, as well as by a limited opportunity to improve the performance characteristics of autoclave materials based on traditional raw materials. To increase the efficiency of production of both dense and cellular silicate materials, the possibility of using clay rocks of the incomplete stage of mineral formation has been proved. A specific feature of the phase formation in the calcareous-sandy-clay system has been established. It consists in accelerating the synthesis of the polymineral composition of neoplasms due to the rock-forming minerals of the rocks of the incomplete mineral formation stage, which optimizes the microstructure of the neoplasms. The rational kinetic parameters of the interaction in the calcareous-clay system and the magnitude of the maximum absorption of lime by clay minerals have been determined, which made it possible to develop a technique for calculating the raw mix for producing dense and cellular autoclave materials having high performance.
A.N. VOLODCHENKO, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.V. STROKOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Bozhenov P.I. Tekhnologiya avtoklavnyh materialov [Technology of autoclave materials]. Leningrad: Strojizdat, 1978. 368 p.
2. Hvostenkov S.I. On the chemistry of the interaction process in the system Ca(OH)2–SiO2–H2O under conditions of hydrothermal synthesis. Stroitel’nye Materialy [Construction Materials]. 2008. No. 5, pp. 76–81. (In Russian).
3. Bernstein S., Thomas Karl Fehr. The formation of 1.13 nm tobermorite under hydrothermal conditions: 1. The influence of quartz grain size within the system CaO–SiO2–D2O. Progress in Crystal Growth and Characterization of Materials. 2012. 58 (s 2–3):84–91. DOI: 10.1016/j.pcrysgrow.2012.02.006
4. Danielle Klimesch and Abhi Ray. Evaluation of phases in a hydrothermally treated CaO–SiO2–H2O system. Journal of Thermal Analysis and Calorimetry. 2002. 70(3):995-1003. DOI: 10.1023/A:1022289111046
5. Strokova V.V., Vezencev A.I., Kolesnikov D.A., Shimanskaya M.S. Properties of synthetic nanotubular hydrosilicates. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shuhova. 2010. No 4, pp. 30–34. (In Russian).
6. Morozova M.V. Surface activity of highly disperse systems based on saponite-containing waste from the diamond mining industry. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shuhova. 2018. No 2, pp 5–9. (In Russian).
7. Chernyshov E.M., Popov V.A., Artamonova O.V. Concepts and substantiations of nano-modification technology of building composites structures. Part 5. Efficient micro-, nano-modification of hydrothermal-synthesis hardening systems and structure of silicate stone (criteria and conditions). Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 38–46. (In Russian).
8. Ovcharenko G.I., Fomichev Yu.Yu. Technology of processing high-calcium ash and slag of CHP in silicate brick. Izvestiya vuzov. Stroitel’stvo. 2012. No. 11–12, pp. 47–53. (In Russian).
9. Bazhenov Yu.M., Chernyshov E.M., Korotkih D.N. Construction of modern concrete structures: defining principles and technological platforms. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 6–14. (In Russian).
10. Goncharova M.A., Ivashkin A.N., Simbaev V.V. Development of optimal compositions of silicate concretes using local raw materials. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 6–8 (In Russian).
11. Volodchenko A.N., Lesovik V.S., Volodchenko A.A., Glagolev E.S., Bogusevich G.G. Energy saving raw materials for the production of new generation silicate materials. International Journal of Pharmacy & Technology. 2016. Vol. 8. Iss. 4, pp. 22673–22686.
12. Volodchenko A.N., Lesovik V.S. Prospects for expanding the nomenclature of silicate materials of autoclave hardening. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 34–37 (In Russian).
13. Lesovik V.S. Geonika (Geomimetika). Primery realizacii v stroitel’nom materialovedenii: monografiya. 2-e izd. dop. [Geonickname (Geomimetics). Examples of implementation in building materials science: monograph. 2-nd ed. add.]. Belgorod: BGTU. 2016. 287 p.
14. Volodchenko A.N., Strokova V.V. Increasing the efficiency of silicate cellular autoclaved materials. Vestnik Severo-Vostochnogo federal’nogo universiteta im. M.K. Ammosova. 2017. No. 2 (58), pp. 60–69. (In Russian).
15. Volodchenko A.N., Strokova V.V. Features of the technology for obtaining structural and heat-insulating cellular concrete on the basis of non-traditional raw materials. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shuhova. 2017. No. 1, pp. 138–143. (In Russian).

For citation: Volodchenko A.N., Strokova V.V. Development of scientific bases for production of silicate autoclave materials using clay raw materials. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 25–31. DOI: https://doi.org/10.31659/0585-430X-2018-763-9-25-31 (In Russian).


Print   Email