Decking boards: structure, manufacturing, properties. Part 1. Mechanical properties

Number of journal: №1-2-2018
Autors:

Matseevich T.A.
Askadskii A.A.

DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-101-105
УДК: 676.022

AbstractAbout the AuthorReferences
The results of our own and literature data on mechanical properties of decking boards have been described. These products are manufactured from wood-polymer composites. The major matrix polymers are polyvinyl chloride, polyethylene and polypropylene. The filler used wood flour or wood fibers different types of wood. It was investigated the strength and deformation properties in tension and compression, stress relaxation, impact strength, ultimate bending stress. Impact resistance was determined by cracking of the free fall of the firing pin on the piece of decking from a certain height. The specific impact strength was measured on the device “Dinstat”. Measurement the tensile strength and bending carried out on instrument LLOYD Instruments LR5K Plus. The specific impact strength at negative temperatures was measured. It is very important for the climatic conditions of Russia. As a result, all studies found that the best matrix polymer is polyvinylchloride. Decking boards based on it have generally improved mechanical characteristics. Specific impact strength at positive and negative temperatures is approximately the same and reaches 8.9 kJ/m2.
T.A. MATSEEVICH, Doctor of Sciences (physics and mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. ASKADSKII, Doctor of Sciences (chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation) 
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) (28, Vavilova Street, Moscow, 119991, Russian Federetion)

1. Moroz P.A., Askadskiy Al.A., Matseyevich T.A., Solovyova E.V., Askadskiy A.A. Use of secondary polymers for production of wood and polymeric composites. Plasticheskie massy. 2017. No. 9–10, pp. 56–61. (In Russian).
2. Matseyevich T.A., Askadskiy A.A. Mechanical properties of a terrace board on the basis of polyethylene, polypropylene and polyvinylchloride. Stroitel’stvo: nauka i obrazovanie. 2017. Vol. 7. No. 3, pp. 48–59. (In Russian).
3. Abushenko A.V., Voskoboynikov I.V., Kondratyuk V.A. Production of products from WPC. Delovoi zhurnal po derevoobrabotke. 2008. No. 4, pp. 88–94. (In Russian).
4. Yershova O.V., Chuprova L.V., Mullina E.R., Mishurina O.A. Research dependence of properties the wood and polymeric composites from the chemical composition of a matrix. Sovremennye problemy nauki i obrazovaniya. 2014. No. 2, p. 26. https://www.science-education.ru/ ru/article/view?id=12363. (In Russian).
5. Klesov A.A. Drevesno-polimernye kompozity / per. s angl. A. Chmelya. [Wood and polymeric composites / translation from English A. Chmel.]. Saint Petersburg. Scientific bases and technologies. 2010. 736 p.
6. Walcott М.Р., Englund К.A. A technology review of wood-plastic composites; 3ed. N.Y.: Reihold Publ. Corp. 1999. 151 p.
7. Under edition. R.F. Grossman; translation from English under the editorship of V.V. Guzeev. Rukovodstvo po razrabotke kompozitsii na osnove PVKh. [The guide to development of compositions on the basis of PVC]. Scientific bases and technologies. 2009. 608 p.
8. Kickelbick G. Introduction to hybrid materials. Hybrid Materials: Synthesis, Characterization, and Applications / G. Kickelbick (ed.). Weinheim : Wiley-VCH Verlag GmbH & Co. KGaA. 2007. 498 p.
9. Wilkie Ch., Summers J., Daniyels of H. Polivinilkhlorid / per. s angl. pod red. G.E. Zaikova. [The polyvinylchloride / translation from English under the editorship of G.E. Zaikov]. Saint Petersburg. Professiya. 2007. 728 p.
10. Kokta B.V., Maldas D., Daneault C., Bland P. Composites of polyvinyl chloride-wood fibers. Рolymer-plastics Technology Engineering. 1990. Vol. 29, pp. 87–118.
11. Nizamov R.K. Polyvinylchloride compositions of construction appointment with multifunctional fillers. Diss. Doct. (Engineering). Kazan. 2007. 369 p. (In Russian).
12. Stavrov V.P., Spiglazov A.V., Sviridenok A.I. Rheological parameters of molding thermoplastic composites high-filled with wood particles. International Journal of Applied Mechanics and Engineering. 2007. Vol. 12. No. 2, рр. 527–536.
13. Burnashev A.I. The high-filled polyvinylchloride construction materials on the basis of the nano-modified wood flour. Diss. Cand. (Engineering). Kazan. 2011. 159 p. (In Russian).
14. Figovsky O., Borisov Yu., Beilin D. Nanostructured binder for acid-resisting building materials. Scientific Israel – Technological Advantages. 2012. Vol. 14. No. 1, pp. 7–12.
15. Hwang S.-W., Jung H.-H., Hyun S.-H., Ahn Y.-S. Effective preparation of crack-free silica aerogels via ambient drying. Journal of Sol-Gel Science and Technology. 2007. Vol. 41, рp. 139–146.
16. Pomogaylo A.D. Synthesis and intercalation chemistry of hybrid organo-inorganic nanocomposites. Vysokomolekulyarnye soedineniya. 2006. Vol. 48. No. 7, pp. 1317–1351.
17. Figovsky O.L., Beylin D.A., Ponomarev A.N. Progress of application of nanotechnologies in construction materials. Nanotekhnologii v stroitel’stve. 2012. No. 3, pp. 6–21. (In Russian).
18. Korolev E.V. The principle of realization of nanotechnology in construction materials science. Stroitel’nye materialy. 2013. No. 6, pp. 60–64. (In Russian).
19. Abushenko A.B. Wood and polymeric composites: merge of two branches. Mebel’shchik. 2005. No. 3, pp. 32–36. (In Russian).
20. Abushenko A.V., Voskoboynikov I.V., Kondratyuk V. A. Production of products from DPK. Delovoi zhurnal po derevoobrabotke. 2008. No. 4, pp. 88–94. (In Russian).
21. Abushenko A.V. Extrusion of wood and polymeric composites. Mebel’shchik. 2005. No. 2, pp. 20–25. (In Russian).
22. Shkuro A.E., Gluhikh V.V., Mukhin N.M., etc. Influence of maintenance of a sevilen in a polymeric matrix on properties of wood and polymeric composites. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012. Vol. 15. No. 17, pp. 92–95. (In Russian).

For citation: Matseevich T.A., Askadskii A.A. Decking boards: structure, manufacturing, properties. Part 1. Mechanical properties. Stroitel’nye Materialy [Construction Materials]. 2018. No. 1–2, pp. 101–105. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-101-105 (In Russian).


Print   Email