Analysis and Criteria Assessment of Rheological Behavior of Mixes for Construction 3-D Printing

Number of journal: №12-2018
Autors:

Slavcheva G.S.
Shvedova M.A.
Babenko D.S.

DOI: https://doi.org/10.31659/0585-430X-2018-766-12-34-40
УДК: 666.9.03

AbstractAbout AuthorsReferences
The analysis of theoretical propositions of classical rheology of disperse systems in relation to conditions of construction 3D printing is made. As a result, a complete list of rheological characteristics of mixtures that are criteria for effective control over their properties at all the stages of the process is revealed. These are the limits of creep and yield strength, static and dynamic viscosity, plastic strength of the mixtures; indicators of resistance to fracture of composites within a specified period of hardening. The systematization and analysis of modern approaches to the evaluation of rheological behavior of disperse systems under static conditions of compressive stresses, modeling the behavior of systems in the process of 3D printing are made. On the basis of these approaches, the method for experimental evaluation of rheological characteristics of mixes is substantiated. As a result of research, it is established that the extrudability of mixes is defined by such their structural and mechanical characteristics as estimates of limits of creep and fluidity, criterion of elasticity. Their values are proposed to determine when testing visco-plastic samples for compression with a constant deformation rate of 5 mm/s, since under these conditions the behavior of the system in the extrusion process is modeled. It is proposed to estimate the form stability of mixtures when compressing samples with a constant loading rate of 0.5 N/s, which corresponds to the average rate of increase in the load when printing construction objects. The quantitative criteria of the form stability include: the value of structural strength characterizing the ability of the system to resist to deformation, the values of plastic strength and plastic deformations reflecting the ability of the system to deform plastically without destruction.
G.S. SLAVCHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M.A. SHVEDOVA, engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)
D.S. BABENKO, engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State University of Architecture and civil Engineering (84, 20-letiya Oktyabrya Street, Voronezh, 394006, Russian Federation)

1. Roussel N. Steady and transient flow behaviour of fresh cement pastes. Cement and Concrete Research. 2005. Vol. 35. Iss. 9, pp. 1656–1664.
2. Ovarlez G., Roussel N. A physical model for the prediction of lateral stress exerted by self-compacting concrete on formwork. Materials and Structures. 2006. No Vol. 39. Iss. 286, pp. 269–279. https://doi.org/10.1617/s11527-005-9052-1
3. Roussel N. A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cement and Concrete Research. 2006. Vol. 36. Iss. 10, pp. 1797–1806.
4. Mahaut F., Mokéddem S., Chateau X., Roussel N., Ovarlez G. Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cement and Concrete Research. 2008. Vol. 38. Iss. 11, pp. 1276–1285.
5. Lootens D., Jousset P., Martinie L., Roussel N., Flatt R.J. Yield stress during setting of cement pastes from penetration tests. Cement and Concrete Research. 2009. Vol. 39. Iss. 5, pp. 401–408.
6. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Materials and Structures. 2012. Vol. 45. Iss. 8, pp. 1221–1232.
7. Roussel N. Simulation of fresh concrete flow. Springer: State-of-the-Art Report of the RILEM Technical Committee 222-SCF. 2014. Vol. 15. 147 p.
8. Qian Y., Kawashima S. Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cement and Concrete Composites. 2018. No. 86, pp. 288–296.
9. Kazemian A. Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials. 2017. No. 145, pp. 639–647.
10. Lecompte T., Perrot A. Non-linear modeling of yield stress increase due to SCC structural build-up at rest. Cement and Concrete Research. 2017. No. 92, pp. 92–97.
11. Ma S., Qian Y., Kawashima S. Experimental and modeling study on the non-linear structural build-up of fresh cement pastes incorporating viscosity modifying admixtures. Cement and Concrete Research. 2018. No. 108, pp. 1–9.
12. Maa G., Li Z.,Wanga L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Construction and Building Materials. 2018. No. 162, pp. 613–627.
13. Wolfs R, Bos F, Salet T. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cement and Concrete Research. 2018. No. 106, pp. 103–116.
14. Panda B., Paul S.C., Mohamed N.A.N., Tay Y.W.D., Tan M.J. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement: Journal of the International Measurement Confederation. 2018. No. 113, pp. 108–116.
15. Panda B., Tan M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceramics International. 2018. Vol. 44. Iss. 9, pp. 56–65.
16. Paul S.C., Tay Y.W.D., Panda,B., Tan M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering. 2018. Vol. 18. Iss. 1, pp. 311–319.
17. Engmann J., Servais C., Burbidge A.S. Squeeze flow theory and applications to rheometry: A review. Journal of Non-Newtonian Fluid Mechanics. 2005. Vol. 132. Iss. 1–3, pp. 1–27.
18. Russel N., Lanos C. Plastic fluid flow parameters identification using a simple squeezing test. Applied Rheology. 2003. Vol. 13. Iss. 3, pp. 3–5.
19. Toutou Z., Roussel N., Lanos C. The squeezing test: A tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research. 2005. Vol. 35. Iss. 10, pp. 1891–1899.
20. Perrot A., Rangeard D., Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Materials and Structures. 2016. No. 49, pp. 1213–1220.
21. Perrot A., Mélinge Y., Estellé P., Lanos C. Vibro-extrusion: a new forming process for cement-based materials. Advances in Cement Research. 2009. Vol. 21. Iss. 3, pp. 125–133.
22. Perrot A., Rangeard D., Mélinge Y., Estellé P., Lanos C. Extrusion criterion for firm cement – based materials. Applied Rheology. 2009. No. 19, pp. 111–127.
23. Perrot A., Mélinge Y., Rangeard D., Micaelli F., EstelléP., Lanos C. Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheologica Acta. 2012. Vol. 51. Iss. 8, pp. 743–754.
24. Урьев Н.Б. Физико-химическая динамика структурированных нанодисперсных систем и нанодисперсных композиционных материалов. Часть 1 // Физикохимия поверхности и защита материалов. 2010. T. 46. № 1. C. 3–23.
24. Uriev N.B. Physicochemical dynamics of structured nanodisperse systems and nanodisperses composite materials: Part I. Fizikohimiya poverhnosti i zashchita materialov. 2010. Vol. 46. No. 1, pp. 3–23. (In Russian).

For citation: Slavcheva G.S., Shvedova M.A., Babenko D.S. Analysis and criteria assessment of rheological behavior of mixes for construction 3-D printing. Stroitel’nye Materialy [Construction Materials]. 2018. No. 12, pp. 34–40. DOI: https://doi.org/10.31659/0585-430X-2018-766-12-34-40 (In Russian).


Print   Email