Research in Influence of Bi-Modularity of Fiber Foam Concrete on Strength of Reinforced Beams

Number of journal: №5-2017
Autors:

Kadomtseva E.E.
Morgun L.V
Beskopylnaya N.I.
Morgun V.N.
Berdnik Ya.A.

DOI: https://doi.org/10.31659/0585-430X-2017-748-5-52-55

AbstractAbout AuthorsReferences
The necessity to take into account the bi-modularity of a material when calculating structures is substantiated on the example of a freely-supported beam of a rectangular cross-section operating under the impact of arbitrary bending loads. It is shown that with due regard for the bi-modularity of the material, the calculated position of the neutral lines is changed and, as a sequence, values of maximal compressing and tensile normal stresses are changed that significantly influence on the bearing capacity of the beam. Examples of calculations for the arbitrary supported, arbitrary loaded beam depending on the various ratios of the modules of elasticity in the course of tensile and compression are presented. The dependence of the maximum normal stress on a number of reinforced bars placed in the compressed and tensile zones of the beam has been established. The numerical study shows that accounting of the bi-modularity of fiber foam concrete contributes, in some cases, to the reduction in material consumption of building structures
E.E. KADOMTSEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.V. MORGUN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.I. BESKOPYLNAYA1, Candidate of Sciences (Engineering);
V.N. MORGUN 2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Ya.A. BERDNIK2, Engineer 

1 Don State Technical University (1, Gagarina Square, Rostov-on-Don, 344000, Russian Federation) 
2 Southern State University (105/42, Bolshaya Sadovaya Street, Rostov-on-Don, 344006, Russian Federation)

1. Morgun L.V. Penobeton: Monografiya [Foam Concrete: Monograph]. Rostov-on-don: Rostov State University of Civil Engineering. 2012. 154 p. 
2. Zarubina A.P. Teploizolyatsiya zdanii i sooruzhenii. Materialy i tekhnologii. [Insulation of buildings and structures. Materials and technologies]. Saint-Petersburg: Bkhv-Peterburg, 2012. 416 p. 
3. Morgun V.N., Kurochka P.N., Bogatina A.Yu., Kadomtseva E.E., Morgun L.V. Issues of bar reinforcement bond with concrete and fiber concrete. Stroitel’nye Materialy [Construction Materials]. 2014. No. 8, pp. 56–59. (In Russian).
4. Ambartsumyan S.A. Raznomodul’naya teoriya uprugo- sti [Multimodulus elasticity theory] Moscow: Nauka. 1982. 317 p. 
5. Kadomtsev E.E., Morgun L.V. The influence of differ- ences in modulus of elasticity in compression and tension when calculating the strength of beams reinforced with filler from reinforced foam concrete. Inzhenerniy vestnik Dona. 2013. No. 2. http://www.ivdon.ru/magazine/ar- chive/n2y2013/1655 (Date of access 05.12.2016). (In Russian). 
6. Kadomtsev E.E., Beskopylny A.N. Calculation of strength of beams reinforced with an aggregate of bi- modulus of elasticity material using various theories of strength Inzhenerniy vestnik Dona. 2013. No. 4. http:// www.ivdon.ru/ru/magazine/archive/n4y2013/2125 (Date of access 05/12/2017). (In Russian). 
7. Rigbi Z. Some thoughts concerning the existence or otherwise of an isotropic bimodulus material. ASME Journal of engineering materials and technology. October 1980. No. 102, pp. 183–384. 
8. Filin A.P. Prikladnaya mekhanika tverdogo deformiruemogo tela. Tom 1 [Applied mechanics of solid deform- able body. Vol. 1]. Moscow: Nauka. 1981. 832 p. 
9. Myshkis A.D. Prikladnaya matematika dlya inzhenerov. Spetsial’nye kursy [Applied mathematics for engineers. Special courses]. Moscow: Fizmatlit. 2007. 688 p. 
10. Chirkov V.P., Klyukin V.I., Fedorov S.V., Shvydko Y.I. Osnovy teorii proektirovaniya stroitel’nykh konstruktsii. Zhelezobetonnye konstruktsii [Fundamentals of the the- ory of design of building structures. Reinforced concrete structures]. Moscow: Publishing house of UMK Ministry of Railways of the Russian Federation. 1999. 371 p. 
11. Kudyakov A.I., Steshenko A.B., Heat insulating rein- forced air hardened foamed concrete. Vestnik TSUAB. English version appendix to 2013. No. 4, 2014. No. 2–6, pр. 60–65. http://www.tsuab.ru/upload/files/addition- al/6_2014_05_Kudjakov_file_4972_4313_4348.pdf (Date of access 05.12.2016). 
12. Mydin Md Azree Othuman, Soleimanzadeh Sara. Effect of polypropylene fiber content on flexural strength of lightweight foamed concrete at ambient and elevated temperatures. Advances in Applied Science Research. 2012, Vol. 3. Iss. 5, pp. 2837–2846. http://www.imedpub.com/ articles/effect-of-polypropylene-fiber-content-on-flex- ural-strength-of-lightweightfoamed-concrete-at-ambi- ent-and-elevated-temperatures.pdf (Date of access 05.12.2016).

For citation: Kadomtseva E.E., Morgun L.V., Beskopylnaya N.I., Morgun V.N., Berdnik Ya.A. Research in Influence of Bi-Modularity of Fiber Foam Concrete on Strength of Reinforced Beams. Stroitel’nye Materialy [Construction materials]. 2017. No. 5, pp. 52–55. DOI: https://doi.org/10.31659/0585-430X-2017-748-5-52-55. (In Russian).


Print   Email