National Standards for Rigid Spray-On PUR and PIR Foams

Number of journal: №10-2017
Autors:

Gravit M.V.
Kuleshin A.S.
Belyaeva S.V.

DOI: https://doi.org/10.31659/0585-430X-2017-753-10-58-64

AbstractAbout the AuthorReferences
Differences between properties of the rigid foam polyurethane and polyisocyanurate (PUR and PIR foams) are presented. A brief review of studies of the foams modification with the purpose to improve heat insulation properties and reduce the flammability is made. A comparative analysis of technical characteristics of various producers of rigid PUR and PIR foams is presented. Problems of the market conditions of producing foam polyurethane and polyisocyanurate in Russia are identified. In the situation when most of the raw components for PUR and PIR at the Russian market are imported, the import substitution with domestic components is very relevant. It is established that the further development of the technology of producing heat insulation spray-on rigid PUR and PIR foams demands the uniformity of technical characteristics of primary components and ready-made products, the creation of uni- form information base for for raw materials and auxiliary materials which are used when producing PUR and PIR foams, development of the RF national standards for execution of works and for components for the spray-on foam polyurethane, for methods of quality assessment of the ready-made foam.
M.V. GRAVIT, Candidate of Sciences (Engineering), Docent (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. KULESHIN, Bachelor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.V. BELYAEVA, Engineer

Peter the Great St. Petersburg Polytechnic University (29, Polytechnicheskaya Street, Saint Petersburg, 195251, Russian Federation)

1. Vatin N.I., Velichkin V.Z., Gorshkov A.S., Pestryakov I.I., Peshkov A.A., Nemova D.V., Kiski S.S. Album of technical solutions for the use of insulation products from polyurethane foam of the trade mark “Spu-insulation” in the construction of residential, public and industrial buildings. Stroitel’stvo Unikal’nykh Zdaniy i Sooruzheniy. Application. 2013. No. 3, pp. 1–264. (In Russian).
2. Gorshkov A.S., Vatin N.I., Datsyuk T.A., Bezrukov A.Yu., Nemova D.V., Kakula P., Viitanen A. Album of technical solutions for the application of insulation products from polyurethane foam in the construction of residential, public and industrial buildings. Stroitel’stvo Unikal’nykh Zdaniy i Sooruzheniy. Application. 2014. No. 5, pp. 1–50. (In Russian).
3. Thermoplastic Polyurethane Elastomers Elastollan. Material Properties. 2017. http://www.polyurethanes. basf.de/pu/solutions/us/function/conversions:/publish/ content/group/Arbeitsgebiete_und_Produkte/ Thermoplastische_Spezialelastomere/Infomaterial/elastollan_ material_uk.pdf (Date of access 09.02.2017). 
4. Zhukov A.D., Smirnova T.V., Chugunkov A.V., Khimich A.O. Features of heat treatment of high-porosity layered materials. Vestnik MGSU. 2013. No. 5, pp. 96–102. (In Russian).
5. Dmitrienko S.G., Apyari V.V. Penopoliuretany: sorbtsionnoe kontsentrirovanie i primenenie v khimicheskom analize [Polyurethane foams: sorption concentrating and use in chemical analysis]. Moscow: Nauka. 2010. 264 p.
6. Voloskova E.V., Poluboyarov V.A., Gorbunov F.K., Gur’yanova T.I., Andryushkova O.V., Goncharov A.I. Modification of polyurethane foam by nanodispersed ceramic particles. Vestnik Kemerovskogo Gosudarstvennogo Universiteta. 2010. No. 1, pp. 8–12 (In Russian).
7. Kairyt Agn , Vaitkus Saulius, Bal nas Giedrius. The impact of chain extender on the properties of polyurethane foam based on rapeseed oil polyol obtained via chemo-enzymatic route. Engineering Structures and Technologies. 2016. No. 3, pp. 101–107.
8. Kirpluks M., Cabulis U., Avots A. Insulation materials in context of sustainability. Riga, Latvia: Latvian State Institute of Wood Chemistry. 2016, pp. 85–111.
9. Korneev A.D., Goncharova M.A., Shatalov G.A. Technology of composite tiles with thermal insulation filled with polyurethane foam. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 92–95. (In Russian).
10. Vairo G., Pellacani L., Golini P., Lotti L. Enhanced polyisocyanurate foams for metal faced panels. http:// www.dow.com/scripts/litorder.asp?filepath=/polyurethane/ pdfs/noreg/109-01836.pdf (Date of access 02.02.2017).
11. Lifeng Wu, Janine Van Gemert, Rafael E. Camargo. Rheology study in polyurethane rigid foams. http://www. huntsman.com/polyurethanes/Media%20Library/a_ MC1CD1F5AB7BB1738E040EBCD2B6B01F1/ Products_MC1CD1F5AB8081738E040EBCD2B6B01F 1/Construction_MC1CD1F5AEF051738E040EBCD2B 6B01F1/Technical%20presentati_MC1CD1F5AF6F41 738E040EBCD2B6B01F1/files/cpi_08_lifengwu_ revised.pdf (Date of access 03.02.2017).
12. Sachchida N. Singh, Jody S. Fife, Sheila Dubs, Paul D. Coleman. Effect of formulation parameters on performance of polyisocyanurate laminate boardstock insulation. http://www.huntsman.com/polyurethanes/ Media%20Library/a_MC1CD1F5AB7BB1738E040EB CD2B6B01F1/Products_MC1CD1F5AB8081738E040 EBCD2B6B01F1/Construction_MC1CD1F5AEF0517 38E040EBCD2B6B01F1/Technical%20presentati_MC 1CD1F5AF6F41738E040EBCD2B6B01F1/files/api06_ huntsman_construction_paper.pdf (Date of access 05.02.2017).
13. Eremina T.Yu., Gravit M.V., Dmitrieva Yu.N. Means of fire protection of building structures analysis of general provisions of Russian and European regulations. Arkhitektura i Stroitel’stvo Rossii. 2012. No. 8, pp. 24–29. (In Russian). 14. Eremina T.Yu., Gravit M.V., Dmitrieva Yu.N. Constructive means of fire protection. Analysis of European regulations. Arkhitektura i Stroitel’stvo Rossii. 2012. No. 9, pp. 30–36. (In Russian).
15. Cabulis U., Kirpluks M., Stirna U., Lopez M.J., VargasGarcia M.C. Rigid polyurethane foams obtained from tall oil and filed with natural fiers: Application as a support for immobilization of lignin degrading microorganisms. Journal of Cellular Plastics. 2012. No. 48, pp. 500–515.
16. Gao L., Zheng G., Zhou Y., Hu L., Feng G., Zhang M. Synergistic effect of expandable graphite, diethylethylphosphonate and organically-modifid layereddouble hydroxide on flme retardancy and fie behaviorof polyisocyanurate-polyurethane foam nanocomposite. Polymer Degradation and Stability. 2014. No. 101, pp. 92–101.
17. Feng F., Qian L. The flame retardant behaviors and synergistic effect of expandable graphite and dimethylmethylphosphonate in rigid polyurethane foams. Polymer Composites. 2013. No. 35, pp. 301–309.
18. Paciorek-Sadowska J., Czuprynski B., Liszkowska J. Chair of chemistry and technology of polyurethanes. Bydgoszcz: Casimir the Great University. 2012, pp. 302–306.
19. Chattopadhyay D.K., Webster D.C. Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science. 2009. No. 34, pp. 1068–1133.
20. Mosiewicki M.A., Aranguren M.I. A short review on novel biocomposites based on plant oil precursors. European Polymer Journal. 2013. No. 49, pp. 1243–1256.
21. Zieleniewska M., Leszczyski M.K., Kuraska M., Prociak A., Szczepkowski L., Krzy owska M., Ryszkowska J. Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol. Industrial Crops and Products. 2015. No. 74, pp. 887–897.
22. Ognestoikost’ i pozharnaya opasnost’ konstruktsii pokrytii na osnove stal’nogo profilirovannogo lista s polimernym uteplitelem [Fire resistance and fire hazard coating structures based on steel profiled sheet with a polymer insulation]. Moscow: FGBU VNIIPO Russian Emergency Situations Ministry, 2015. 29 p. 23. Gravit M.V. Fire resistance of building structures in European and Russian standards. Standarty i Kachestvo. 2014. No. 2, pp. 36–37. (In Russian).

For citation: Gravit M.V., Kuleshin A.S., Belyaeva S.V. National standards for rigid spray-on PUR and PIR foams. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 58–64. DOI: https://doi.org/10.31659/0585-430X-2017-753-10-58-64. (In Russian).


Print   Email