Durability of Heavy-Weight Concrete with Portland Cement Treated in Apparatus of Vortex Layer

Number of journal: №10-2017
Autors:

Ibragimov R.A.
Korolev E.V.
Deberdeev T.R.
Leksin V.V.

DOI: https://doi.org/10.31659/0585-430X-2017-753-10-28-31

AbstractAbout the AuthorReferences
At present, the tendency of improving physical-mechanical properties of building material due to the activation of raw components is observed. One of the methods is the activation of cement in the apparatus of vortex layer. The paper presents the data on optimization of parameters of the apparatus of vortex layer by means of realization of the four-factor plan of the second order for heavy-weight concrete of B25 class. On the basis of the experiment planning, optimal parameters of operation of the apparatus of vortex layer, sizes of ferromagnetic particles and relation of ferromagnetic particles to the material activated were revealed. The mathematical dependence of durability of heavy-weight concrete at the age of 1 and 28 days of hardening on the independent variables was found. At optimal conditions of the apparatus of vortex layer operation, improving the compression strength of heavy-weight concrete takes place at the first day of hardening by 2.44 times and at the grade age – by 1.48 times.
R.A. IBRAGIMOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. KOROLEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
T.R. DEBERDEEV3, Doctor of Sciences (Engineering), V.V. LEKSIN3 , Candidate of Sciences (Physics and Mathematics) 

1 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Russian Federation) 
2 Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation) 
3 Kazan National Research Technological University (68, K. Marksa Street, Kazan, 420015, Russian Federation)

1. Ушеров-Маршак А.В. Современный бетон и его технологии // Бетон и железобетон. 2009. С. 20–25. 
1. Usherov-Marshak A.V. Modern concrete and its technologies. Beton i Zhelezobeton. 2009, pp. 20–25. (In Russian). 
2. Королев Е.В. Принцип реализации нанотехнологии в строительном материаловедении // Строительные материалы. 2013. № 6. С. 60–64. 
2. Korolev E.V. Principle of realization of nanotechnology in building materials science. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 60–64. (In Russian). 
3. Rajesh, D.V.S.P., Narender Reddy A., Venkata Tilak U., Raghavendra M. Performance of alkali activated slag with various alkali activators. International Journal of Innovative Research in Science, Engineering and Technology. 2013. No. 2, pp. 378–386. 
4. Benes L., Minar L. Geopolymer as a bonding agent in braking segment composites. Proceed. 3rd International Symposium «Non-traditional cement&concrete». Brno. 2008, pp. 86–89. 
5. Bakharev T., Sanjayan J.G., Cheng Y.B. Effect of admixtures on properties of alkali-activated slag concrete. Cement and Concrete Research. 2001. No. 30 (9), pp. 1367–1374. 
6. Van Jaarsveld J.G.S., Van Deventer J.S.J., Lukey G.C. The effect of composition and temperature on the properties of fly ash and kaolinite – based geopolymers. Chemical Engineering Journal. 2002. No. 89, pp. 63–73. 
7. Fediuk R.S. Mechanical activation of construction binder materials by various mills. Materials Science and Engineering. 2016. No. 125, pp. 1–7. 
8. Sadique M., Al-Nageima H., Athertona W., Setonb L., Dempsterb N. Mechano-chemical activation of high-Ca fly ash by cement free blending and gypsum aided grinding. Construction and Building Materials. 2013. No. 43, pp. 480–489. 
9. Balaz P. Mechanochemistry in nanoscience and minerals engineering. Berlin-Heidelberg: Springer-Verlag. 2008. 413 p. 
10. Bouzoubaa N., Zhang M.N., Bilodeau A., Malhotra V.M. The effect of grinding on the physical properties of fly ashes and a portland cement clinker. Cement and Concrete Research. 1997. No. 27, pp. 1861–1874. 
11. Bergold S.T., Goetz-Neunhoeffer F., Neubauer J. Mechanically activated alite: New insights into alite hydration. Cement and Concrete Research. 2015. No. 76, pp. 202–211. 
12. Sekulic Z., Petrov M., Zivanovic D. Mechanical activation of various cements. International Journal of Mineral Processing. 2004. No. 74, pp. 355–363. 
13. Sekulic Z., Popova S., uri ica M., Rosic A. Mechanical activation of cement with addition of fly ash. Materials Letters. 1999. No. 39, pp. 115–121. 
14. Scian A.N., Porto López J.M., Pereira E. Mechanochemical activation of high alumina cements-hydration behaviour. Cement and Concrete Research. 1991. No. 21, pp. 51–60. 
15. Kalinkin A.M., Krzhizhanovskaya M.G., Gurevich B.I., Kalinkina E.V., Tyukavkina V.V. Hydration of mechanically activated blended cements studied by in situ X-ray diffraction. Inorganic Materials. 2015. No. 51, pp. 828–833. 
16. Emoto T., Bier T.A. Rheological behavior as influenced by plasticizers and hydration kinetics. Cement and Concrete Research. 2007. No. 37 (5), pp. 647–654. 
17. Puertas F., Santos H., Palacios M., Mart nez Ram rez S. Polycarboxylate superplasticizer admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Advances in Cement Research. 2005. Vol. 17. No. 2, pp. 77–89. 
18. Sakai E., Kasuga T., Sugiyama T., Asaga K., Daimon M. Influence of superplasticizers on the hydration of cement and the pore structure of hardened cement. Cement and Concrete Research. 2006. Vol. 36. No. 11, pp. 2049–2053. 
19. Логвиненко Д.Д., Шеляков О.П. Интенсификация технологических процессов в аппаратах с вихревым слоем. Киев: Техника, 1976. 144 с. 
19. Logvinenko D.D., Shelyakov O.P. Intensifikatsiya tekhnologicheskikh protsessov v apparatakh s vikhrevym sloem [Intensification of technological processes in devices with a vortex layer]. Kiev: Tekhnika. 1976. 144 p. 
20. Mischenko M.V., Bokov M.M., Grishaev M.E. Activation of technological processes of materials in the device rotary electromagnetic field. Technical Sciences. 2015. No. 2, pp. 3508–3512. 21. Филонов И.А., Явруян Х.С. Механическая активация портландцемента в аппарате вихревого слоя // Инженерный вестник Дона. 2012. № 3 (21). С. 678–681. 
21. Filonov I.A., Yavruyan Kh.S. Mechanical activation of Portland cement in the vortex layer apparatus. Inzhenernyi Vestnik Dona. 2012. No. 3 (21), pp. 678–681. (In Russian). 
22. Явруян Х.С., Филонов И.А. Гомогенизация наномо- дифицированных цементных систем и подбор пара- метров их обработки в установках с вихревым слоем // Вестник Московского государственного строительного университета. 2013. № 2. С. 130–136. 
22. Yavruyan Kh.S., Filonov I.A. Homogenization of nanomodified cement systems and selection of parameters for their processing in installations with a vortex layer. Vestnik Moskovskogo Gosudarstvennogo Stroitel’nogo Universiteta. 2013. No. 2, pp. 130–136. (In Russian).

For citation: Ibragimov R.A., Korolev E.V., Deberdeev T.R., Leksin V.V. Durability of heavy-weight concrete with portland cement treated in apparatus of vortex layer. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 28–31. DOI: https://doi.org/10.31659/0585-430X-2017-753-10-28-31. (In Russian).


Print   Email