Colmatation: Phenomenon, Theory, Prospects of Using for Control Over Concrete Corrosion Processes

Number of journal: №10-2017
Autors:

Fedosov S.V.
Rumyantseva V.E.
Konovalova V.S.
Evsyakov A.S.

DOI: https://doi.org/10.31659/0585-430X-2017-753-10-10-17

 

AbstractAbout the AuthorReferences
General information about peculiarities of the phenomenon of colmatation of pores and capillaries of the cement stone is presented; negative and positive consequences of the process of materials colmatation in various branches of the industry are also presented. Data revealing the increase in the strength characteristics of the cement stone at the initial stage when colmatating pores due to the structural transformations, which occur in the cement stone because of corrosion processes, are presented. Research in changes of the mineralogical composition of the cement stone in the course of fluid corrosion in the aggressive media containing chloride-ions has been conducted. The relation between changes in the structure and mineralogical composition of cement stone and the strength loss after effect of liquid aggressive media containing chloride-ions has been established. Mathematical models of the kinetics and dynamics of the mass transfer, accompanied by colmatation, at chemical corrosion of the cement stone are presented.
S.V. FEDOSOV, Doctor of Sciences (Engineering), Academician of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.E. RUMYANTSEVA, Doctor of Sciences (Engineering), Adviser of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.S. KONOVALOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. EVSYAKOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Ivanovo State Polytechnical University (20, 8 Marta Street, Ivanovo, 153037, Russian Federation)

1. Akhverdov I.N. Osnovy fiziki betona [Fundamentals of physics of concrete]. Moscow: Stroyizdat. 1981. 463 р. 
2. Usherov-Marshak A.V. Betonovedenie: leksikon [Concrete Studies: Lexicon]. Moscow: Stroymaterialy. 2009. 112 р. 
3. Szilvssy Z. Soils engineering for design of ponds, canals and dams in aquaculture. Inland Aquaculture Engineering. FAO. Rome. 1984, pp. 79–101. 
4. Akhverdov I.N. Vysokoprochnyi beton [High-strength concrete]. Moscow: Gosstroyizdat. 1961. 163 р. 
5. Ivanov I.A. Legkie betony na iskusstvennykh poristykh zapolnitelyakh [Lightweight concretes on artificial po- rous aggregates]. Moscow: Stroyizdat. 1993. 182 р. 
6. Rozental’ N.K. Permeability and corrosion resistance of concrete. Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2013. No. 1, pp. 35–37. (In Russian). 
7. Rakhimbaev Sh.M., Karpacheva E.N., Tolypina N.M. On the choice of the type of cement based on the theory of colmatation in the complex composition of an aggressive environment. Beton i Zhelezobeton. 2012. No. 5, pp. 25–26. (In Russian). 
8. Rozental’ N.K., Rozental’ A.N., Lyubarskaya G.V. Corrosion of concrete during the interaction of alkalis with aggregate silica. Beton i Zhelezobeton. 2012. No. 1, pp. 50–60. (In Russian). 
9. Ivanov F.M., Lyubarskaya G.V., Rozental’ N.K. Interaction of concrete aggregates with alkalis of cement and additives. Beton i Zhelezobeton. 1995. No. 1, pp. 15– 18. (In Russian). 
10. Aksel’rud G.A., Molchanov A.D. Rastvorenie tverdyh veshhestv [Dissolution of solid substances] Moscow: Himiya. 1977. 272 р. 
11. Rakhimbaev Sh.M. Kinetics of colmatation processes during chemical corrosion of cement systems. Beton i Zhelezobeton. 2012. No. 6, pp. 16–17. (In Russian). 
12. Rakhimbaev Sh.M. Principles of choosing cements for use in conditions of chemical aggression. Izvestiya Vuzov. Stroitel’stvo. 1998. No. 10, pp. 65–68. (In Russian). 
13. Alekseev S.N., Rozental’ N.K. Korrozionnaya stoikost’ konstruktsii v agressivnoi promyshlennoi srede [Corrosion resistance of structures in an aggressive industrial envi- ronment]. Moscow: Stroyizdat. 1976. 206 р. 
14. Rozental’ N.K. Problems of corrosive damage to concrete. Beton i Zhelezobeton. 2007. No. 6, pp. 29–31. (In Russian). 
15. Bazhenov Yu.M. Tekhnologiya betona [Technology of concrete]. Moscow: Vysshaya shkola. 1987. 415 р. 
16. Stroganov E.V., Meretsova G.S. Estimation of corrosion processes of concrete during optimization of sand-salt mixes. Vestnik TGASU. 2009. No. 2, pp. 105–111. (In Russian). 
17. Pishch I.V., Barantseva S.E., Belanovich A.L., Lugin V.G. Hydrophobization – a promising way to improve the quality of wall ceramic materials. Trudy BGTU. Seriya 3: Khimiya i Tekhnologiya Neorganicheskikh Veshchestv. 2010. Vol. 1. No. 3, pp. 55–60. (In Russian). 
18. Sheshukov A.P., Lychagin D.V., Makarov E.Ya. Investigation of the processes of formation of the structure of arbolite in the chemical activation of wood. Vestnik Tomskogo Gosudarstvennogo Arkhitekturno-Stroitel’nogo Universiteta. 2014. No. 3 (44), pp. 145–152. (In Russian). 
19. Leonovich S.N., Poleyko N.L., Zhuravskiy S.V., Temnikov Yu.N. Operational characteristics of concrete building structures with the use of “Kalmatron” system. Stroitel’nye Materialy [Construction Materials]. 2012. No. 11, pp. 64–66. (In Russian). 
20. Leonovich S.N., Poleyko N.L., Temnikov Yu.N., Zhuravskii S.V. Physical and mechanical properties of con- crete with the addition of a penetrating system «Kalmatron». Vestnik Volgogradskogo Gosudarstvennogo Arkhitekturno- Stroitel’nogo Universiteta. Seriya: Stroitel’stvo i arkhitektura. 2013. No. 31–2 (50), pp. 124–131. (In Russian). 
21. Kasatkina A.V., Solov’ev D.V., Stepanova I.V. Hydroprotective properties of cement-containing material of penetrating action when porous bases of different nature are used. Beton i Zhelezobeton. 2012. No. 6, pp. 5–8. (In Russian). 
22. Veselkov S.N., Grebennikov V.T. Composition and properties of colmatizing formations of water intake wells. Ratsional’noe Osvoenie Nedr. 2013. No. 6, pp. 44–47. (In Russian). 
23. Blazhko L.S., Shtykov V.I., Kantsiber Yu.A., Ponomarev A.B., Chernyaev E.V. Protection from the collation of geotextile materials used in the ballast prism as a separation layer. Izvestiya Peterburgskogo Universiteta Putei Soobshcheniya. 2014. No. 4 (41), pp. 22–26. (In Russian). 
24. Bitimbaev M.Zh. Chemical colmatation and methods of its elimination in underground leaching of metals. Vestnik Natsional’noi Inzhenernoi Akademii RK. 2009. No. 2 (32), pp. 122–125. (In Russian). 
25. Moskvin V.M., Ivanov F.M., Alekseev S.N., Guzeev E.A. Korroziya betona i zhelezobetona, metody ikh zashchity [Corrosion of concrete and reinforced concrete, methods of their protection]. Moscow: Stroyizdat. 1980. 536 р. 
26. Alekseev S.N., Rozental’ N.K. Korrozionnaya stoikost’ konstruktsii v agressivnoi promyshlennoi srede [Corrosion resistance of structures in an aggressive industrial environment]. Moscow: Stroyizdat. 1976. 205 р. 
27. Rakhimbaev Sh.M., Tolypina N.M. Substantiation of the choice of the type of binder for aggressive environments of organic origin on the basis of the theory of heterogeneous physicochemical processes. Vestnik Belgorodskogo Gosudarstvennogo Tekhnologicheskogo Universiteta im. V.G. Shukhova. 2016. No. 9, pp. 159–163. (In Russian). 
28. Rakhimbaev Sh.M., Tolypina N.M. Povyshenie korrozionnoi stoikosti betonov putem ratsional’nogo vybora vyazhushchego i zapolnitelei [Increase of corrosion resistance of concrete by rational choice of binder and aggregates.]. Belgorod: BGTU. 2015. 321 р. 
29. Starchukov D.S. Estimation of the effectiveness of the complex additive based on iron hydroxide for the production of high-strength concrete. Beton i Zhelezobeton. 2012. No. 5, pp. 8–9. (In Russian). 
30. Patent RF 2110495. Sposob prigotovleniya kompleksnoi dobavki Siligran-2 dlya tsementnykh stroitel’nykh smesei [A method for preparing a complex additive SILIGRAN-2 for cement building mixtures]. Frumin D.A. Declared 03.20.1996. Published 05.10.1998. (In Russian). 
31. Jonkers H.M., Schlangen E. Development of a bacteria-based self-healing concrete. Tailor Made Concrete Structures. Walraven & Stoelhorst (eds), Taylor & Francis Group, London. 2008, pp. 425–430. 
32. Polak A.F. Fiziko-khimicheskie osnovy korrozii zhelezobetona [Physicochemical basis of corrosion of reinforced concrete]. Ufa: UNI. 1982. 73 р. 
33. Selyaev V.P., Sedova A.A., Kupriyashkina L.I., Osipov A.K. Influence of the concentration of phosphoric acid and the degree of filling of the zeolite-bearing rock on the strength of the cement stone. Izvestiya Vuzov. Stroitel’stvo. 2015. No. 8, pp. 13–20. (In Russian). 
34. Berdov G.I., Vinogradov S.A., Mashkin A.N., Khritankov V.F. Dielcometric analysis of the effect of electrolyte solution on the properties of cement materials. Izvestiya Vuzov. Stroitel’stvo. 2015. No. 8, pp. 21–24. (In Russian).
35. Leonovich S.N., Prasol A.V. Reinforced concrete in conditions of chloride corrosion: deformation and destruction. Stroitel’nye Materialy [Construction Materials]. 2013. No. 5, pp. 94–95. (In Russian). 
36. Moskvin V.M., Royak G.S. Korroziya betona pri deistvii shchelochei tsementa na kremnezem zapolnitelya [Corrosion of concrete during the action of alkalis of cement on aggregate silica]. Moscow: Gosstroyizdat. 1962. 247 р.
37. Rumyantseva V.E., Konovalova V.S., Karavaev I.V., Loginova S.A. The influence of aggressive environments on the change of structural-phase composition of cement concrete and their strength characteristics. Information environment of the University: materials of the XXIII International scientific and technical conference. Ivanovo: ISPU. 2016, pp. 372–376. (In Russian). 
38. Rumyantseva V.E., Konovalova V.S., Karavaev I.V., Loginova S.A. Change of strength characteristics of con- crete with water-repellent additives at the liquid corrosion of the II type. Modern trends in the development of science and technologies. 2016. No. 4–3, pp. 104–107. (In Russian). 
39. Kuznetsova I.N., Kosach A.F., Rashchupkina M.A., Gutareva N.A. Influence of the main minerals of cement stone on its structure and properties. Izvestiya Vuzov. Stroitel’stvo. 2015. No. 8, pp. 25–32. (In Russian). 
40. Ryzhikov N.I., Mikhailov D.N., Shakov V.V. A method for calculating porosity distribution profiles and volume fractions of materials in a porous medium by analyzing X-ray microtomography data. Trudy MFTI. 2013. Vol. 5. No. 4 (20), pp. 161–169. (In Russian). 
41. Al-Abduwani F.A.H., Farajzadeh R., Van den Broek W.M.G.T., Currie P.K., Zitha P.L.J. Filtration of micron-sized particles in granular media revealed by x-ray computed tomography. Review of Scientific Instruments. 2005. Vol. 76. doi: http://dx.doi.org/10.1063/1.2103467 
42. De Zwart A.H. Experiment and theoretical investigation of clogging processes near production wells using X-ray Tomography. SPE Annual Technical Conference and Exhibition. 21–24 September 2008. Denver, Colorado, USA. https://doi.org/10.2118/116411-MS 
43. Nikitina L.V., Larionova Z.M., Lapshina A.M. Phase transformations of ettringite in expanding systems. Physico-chemical Studies of Concretes and their Constituents Proceedings of NIIZhB. Moscow. 1975. No. 17, pp. 39–55. (In Russian). 
44. Zhdanok S.A., Khrustalev B.M., Batyanovskii E.I., Leonovich S.N. Nanotechnologies in Building Materials Science: Reality and Prospects. Vestnik Belorusskogo Natsional’nogo Tekhnicheskogo Universiteta. 2009. No. 3, pp. 5–23. (In Russian). 
45. Leonovich S.N., Gurinovich V.Yu., Burakov V.S., Rai- kov S.N. Spectral analysis of mineralogical composition of cement. Tekhnologii Betonov. 2009. No. 6, pp. 46–47. (In Russian). 
46. Butt Yu.M., Okorokov S.D., Sychev M.M., Timashev V.V. Tekhnologiya vyazhushchikh veshchestv [Technology of binders]. Moscow: Vysshaya shkola. 1965. 620 р. 
47. Konovalova V.S., Karavaev I.V., Loginova S.A. X-ray analysis of cement stone. Young scientists – development of textile-industrial cluster (SEARCH-2016): a collection of materials of the interuniversity scientific-technical conference of post-graduate students and students with international participation. Ivanovo. 2016, pp. 98–99. (In Russian). 
48. Rakhimbaev Sh.M., Tolypin NM Thermodynamic analysis of acid corrosion. Scientific and practical conference dedicated to the 85th anniversary of Bazhenov Yu.M.: the collection of conference materials. Belgorod. 2015, pp. 549–552. (In Russian). 
49. Polak A.F. Osnovy modelirovanija korrozii zhelezobetona [Basics of modeling the corrosion of reinforced concrete]. Ufa: UNI. 1986. 69 р. 
50. Klyueva N.V., Androsova N.B., Gubanova M.S. Criterion of strength of corrosion damaged concrete under complex stress state. Stroitel’naya Mekhanika Inzhenernykh Konstruktsii i Sooruzhenii. 2015. No. 1, pp. 38–42. (In Russian). 
51. Klueva N.V., Emelyanov S.A., Kolchunov V.I. Criterion of crack resistance of corrosion damaged concrete in plane stress state. Procedia Engineering. 2015. No. 117 (1), pp. 179–185. 
52. Gusev B.V., Faivusovich A.S., Stepanova V.F., Rozental’ N.K. Matematicheskie modeli protsessov korrozii betona [Mathematical models of processes of corrosion of concrete]. Moscow: TIMR. 1996. 104 p.

For citation: Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Evsyakov A.S. Colmatation: phenomenon, theory, prospects of using for control over concrete corrosion processes. Stroitel’nye Materialy [Construction Materials]. 2017. No. 10, pp. 10–17. DOI: https://doi.org/10.31659/0585-430X-2017-753-10-10-17. (In Russian).


Print   Email