Theoretical and Experimental Substantiations of Calculation of Forces for Pull-out of Anchors from Gas Concrete

Number of journal: №4-2016
Autors:

V.P. VYLEGZHANIN
V.A. PINSKER
G.I. GRINFELD

DOI: https://doi.org/10.31659/0585-430X-2016-736-4-92-96
УДК: 691.327.332

 

AbstractAbout AuthorsReferences
Methods for calculation of forces required to pull-out profiled anchors from gas concrete are presented with theoretical and experimental substantiations. It is theoretically substantiated that the growth of limit value of the force required to pull-out an anchor is close to the directly proportional dependence on the depth of its anchoring. A limit force of anchor pull-out from gas concrete is the total resistance of forces preventing it because the shear stress diagram is close to the rectangular one. Presented formulae of calculation of forces required for anchor pull-out make it possible to calculate the forces of anchor pull-out from gas concrete with due regard for its density grade and cubic strength or the class B of compressive strength, characteristic of their profile (thread). When calculating forces, it is necessary to take into account the destruction of gas concrete under the profile picks in the form of shear or cutoff as well as its compaction by fractured particles of cement-sand stone formed in the process of screwing of the anchor. Forces of anchors pull-out obtained by calculation or experimentally are compared.
V.P. VYLEGZHANIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.), Director,
V.A. PINSKER, Candidate of Sciences (Engineering), Research Manager;
G.I. GRINFELD, Executive Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 The Cellular Concrete Center (1/3, Zodchego Rossi Street, Saint-Petersburg, 191023, Russian Federation)
2 National Association of Autoclaved Aerated Concrete Manufacturers (40, Oktyabr’skaya Embankment, 193091, Saint-Petersburg, Russian Federation)

1. Vylegzhanin V.P. Opredelenie deformatsii elementov konstruktsii iz stalefibrobetona pri rastyazhenii i izgibe na razlichnykh stadiyakh zagruzheniya [Determination of deformation of structural elements of steel-fibroconcrete tensile and bending at different stages of loading. In book Spatial design in civil engineering] Leningrad: LenZNIIEP. 1982, pp. 53–60.
2. Reshetov D.N., Kirsanova V.N Tangent contact details of the compliance. The rigidity in mechanical engineering: Processing of scientific papers. Bryansk: BITM. 1971, pp. 28–32. (In Russian).
3. Karpenko N.I., Sudakov G.N., Leites E.S., Zolotov A.B. Napryazhenno-deformirovannoe sostoyanie betona v zone kontakta s armaturoi do i posle obrazovaniya kontaktnykh treshchin [Stress-strain state of concrete in the zone of contact with the valve before and after the formation of the contact cracking]. Moscow: NIIZhB. 1979.
4. Shreiner L.A., Pavlova N.N., Yakushev V.P., Baidlyuk B.V. Application of the method to determine the indentation resistance to the destruction of rocks during drilling and qualitative assessment of the plasticity of rocks. Collection of articles: Experimental studies on the development of deep oil fields. Moscow. 1964. (In Russian).
5. Kholmyanskiy M.M., Erin N.N. Issledovanie mekhanizma stsepleniya armatury periodicheskogo profilya s betonom pri pomoshchi ispytaniy betona na mestnoe smyatie. V kn. Ankerovka armatury v betone [Research fittings periodic profile of the clutch mechanism with the concrete using a concrete test on local bearing. In book: Anchoring reinforcement in concrete]. Moscow: Stroyizdat. 1969.
6. Kholmyanskiy M.M. Kontakt armatury s betonom [Contact reinforcement with concrete]. Moscow: Stroyizdat. 1981.
7. Benefit for the design of concrete and reinforced concrete structures from cellular concrete. Moscow. 1986. (http://aerobel.ru/upload/iblock/8f0/8f021f102cce1b1b 6f6a2387f1279238.pdf) (In Russian).
8. GOST R 53231-2008 Betony. Pravila kontrolya i otsenki prochnosti [Concrete. Rules for monitoring and evaluation of safety]. Moscow: Standartinform. 2009. (In Russian).

For citation: 


Print   Email